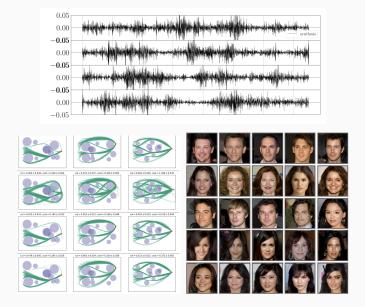
Flow-based generative models

how they work and how to use them

Simon Coste June 26, 2024

Intro: Generative Modelling

 x_*^1, \ldots, x_*^n : dataset drawn from an unknown distribution ρ_* ("target")



The two goals of generative modelling:

- 1. Generate 'new' samples from ρ_* (direct problem)
- 2. Find a 'good' estimator $\hat{\rho}_*$ for ρ_* (inverse problem)

Diffusion Models I. Definition

Is there a way to find a random process (X_t) such that

1.
$$X_0 \sim \rho_*$$
 $X_1 \sim N(0, I)$

- 2. one can easily go from X_1 to X_0 and vice-versa
- 3. (X_t) has nice properties: easy to generate, direct definition, etc.

Is there a way to find a random process (X_t) such that

1.
$$X_0 \sim \rho_*$$
 $X_1 \sim N(0, I)$

- 2. one can easily go from X_1 to X_0 and vice-versa
- 3. (X_t) has nice properties: easy to generate, direct definition, etc.

Vocabulary for the rest of the talk: **Noising/forward process:** from ρ_* at time t = 0 to N(0, I) at time t = T **Forward distribution:** $p_t = \text{law of } X_t$ **Generative/backward process:** from N(0, I) at time t = 0 to ρ_* at time t = T. **Backward distribution:** $q_t = p_{T-t}$ Simple Idea: progressively add noise to the sample.

 $X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_N$ where $X_{k+1} = X_k + \epsilon \xi_k$

Transition probabilities $p(x_{k+1} | x_k) = N(x_k, \epsilon^2)$.

Simple Idea: progressively add noise to the sample.

$$X_0 o X_1 o \cdots o X_N$$
 where $X_{k+1} = X_k + \epsilon \xi_k$

Transition probabilities $p(x_{k+1} | x_k) = N(x_k, \epsilon^2)$.

We want to reverse the process, but

$$p(x_k \mid x_{k+1}) = rac{p(x_{k+1} \mid x_k) p(x_k)}{p(x_{k+1})}$$

is not directly available.

A wild guess:

$$p(x_k \mid x_{k+1}) \approx N(\mu_k(x_k), \epsilon^2)$$

for some (possibly complicated) function μ_k that could be learnt.

Continuous Progressive noising

Consider the Ornstein-Uhlenbeck process

$$dX_t = -X_t dt + \sqrt{2} dB_t \qquad X_0 \sim \rho_* \tag{1}$$

$$X_t = e^{-t}X_0 + \sqrt{2}\int_0^t e^{2(s-t)}dBs$$

$$X_t \stackrel{\mathsf{law}}{=} e^{-t}X_0 + \sqrt{1 - e^{-2t}} \times N(0, I) o N(0, I)$$

Take T large, say $T \approx 10$. Then $X_T \approx N(0, I)$ (fast mixing).

Formula (1) gives a connection between the target ρ_* and N(0, I). Can it be reversed? More generally, for any f,

$$dX_t = -\nabla f(X_t) + \sqrt{2}dB_t \qquad X_0 \sim \rho_*$$
(2)

gives a connection between ρ_* and e^{-f}/Z where $Z = \int e^{-f(x)} dx$.

$$dX_t = -lpha(t)X_t dt + \sqrt{2\sigma(t)^2} dB_t$$

 $lpha(t)$: scale schedule $\sigma(t)$: noise schedule

We note p_t the law of X_t and $q_t = p_{T-t}$.

Define a new process by

$$dY_t = (2\nabla \log q_t(Y_t) + Y_t)dt + \sqrt{2}dB_t \qquad Y_0 \sim p_T.$$
(3)

$$(X_{T-t})_{t\in[0,T]} \stackrel{\text{law}}{=} (Y_t)_{t\in[0,T]}.$$

A general paper on time-reversal diffusions: Hausman and Pardoux.

This gives a generative process as follows:

1) sample $Y_0 \sim p_T \approx N(0, I)$ 2) solve (3) using a numerical scheme until time T3) the endpoint Y_T should have distribution $\approx \rho_*$.

Problem: in point 2), q_t depends explicitly on ρ_* .

Score-Based Diffusion Models II. Training

Let us recall the **generative** process:

$$dY_t = (2\nabla \log q_t(Y_t) + Y_t)dt + \sqrt{2}dB_t \qquad Y_0 \sim p_T \approx N(0, I).$$
(4)

We need access to $\nabla \log q_t = \nabla \log p_{T-t}$ for every $t \in [0, T]$.

Remember that X_t has the same distribution as $e^{-t}X_0 + N(0, 1 - e^{-2t})$.

Using the samples x_*^i from ρ_* , we get samples from p_t :

$$e^{-t}x_*^i + \sqrt{1 - e^{-2t}}\xi^i \quad \sim p_t = q_{T-t}$$

where ξ^i are iid N(0, 1).

 q_t is a convolution between ρ_* (rescaled) and a Gaussian! \Rightarrow we use DNS to estimate $\nabla \log q_t$.

> (s_{θ}) : family of parametrized functions (neural networks) $DSM(\theta) = \mathbb{E} |s_{\theta}(X_t) - \varepsilon_t / (1 - e^{-2t})|^2$ where $X_t = e^{-t}X_0 + \varepsilon_t$ and $\varepsilon_t \sim N(0, (1 - e^{-2t})I)$.

(Reminder: *DSM* has the same minimizers as $\mathbb{E}_{p_t}[|\nabla \log p_t(X_t) - s_{\theta}(X_t)|^2]$) For each *t* this gives an approximation s_{θ_t} of $\nabla \log p_t$. In practice we use only one network $s_{\theta}(t, x)$. Let s_{θ} : $[0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be a family of parametrized functions. In practice we want to find $\nabla \log p_t$ for all t so we can use the loss

$$\int_0^T \mathbb{E}\left[|(1-e^{-2t})^{-1}\varepsilon_t - s_\theta(t, X_t)|^2 dt\right]$$
(5)

equivalently, we can approximate the integral with a Monte-Carlo method:

$$L(\theta) = \mathbb{E}_{\tau \sim \text{Unif}[0,T]} \mathbb{E}\left[|(1 - e^{-2\tau})^{-1} \varepsilon_{\tau} - s_{\theta}(\tau, X_{\tau})|^2 \right]$$
(6)

Clearly if $L(\theta_*) = 0$ then $s_{\theta_*}(t, x) = \nabla \log p_t(x)$ for every t, x.

THEORETICAL INTERMEZZO

DM can be seen as EBMs in the path space

- \mathbb{P} = probability law of the process $dX_t = -\alpha_t dt + dB_t$
- \mathbb{Q} = probability law of the process $dX_t = -\beta_t dt + dB_t$

Girsanov's theorem: \mathbb{P} and \mathbb{Q} are equivalent We can compute the Kullback-Leibler divergence:

$$\mathrm{d}_{\mathrm{KL}}(\mathbb{P} \mid \mathbb{Q}) = \mathbb{E}_{\mathbb{P}}[\log \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}}] = \frac{1}{2} \int_{0}^{T} \mathbb{E}[|lpha_{\mathfrak{s}} - eta_{\mathfrak{s}}|^{2}] d\mathfrak{s}.$$

DM can be seen as EBMs in the path space

- \mathbb{P} = probability law of the process $dX_t = -\alpha_t dt + dB_t$
- \mathbb{Q} = probability law of the process $dX_t = -\beta_t dt + dB_t$

Girsanov's theorem: \mathbb{P} and \mathbb{Q} are equivalent We can compute the Kullback-Leibler divergence:

$$\mathrm{d}_{\mathrm{KL}}(\mathbb{P} \mid \mathbb{Q}) = \mathbb{E}_{\mathbb{P}}[\log \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}}] = \frac{1}{2} \int_{0}^{T} \mathbb{E}[|lpha_{s} - eta_{s}|^{2}] ds.$$

Application.

 $\mathbb{P}_* = \text{true generative process}, \ \alpha_t(x) = 2\nabla \log q_t(x) + x$ $\mathbb{Q}_{\theta} = \text{our generative process}, \ \beta_t(x) = 2s_{\theta}(t, x) + x$

$$\mathrm{d}_{\mathrm{KL}}(\mathbb{P}_* \mid \mathbb{Q}_{ heta}) = rac{1}{2} \int_0^T \mathbb{E}[|
abla \log q_s(X_s) - s_{ heta}(s, X_s)|^2] ds.$$

END OF THE THEORETICAL INTERMEZZO

For each gradient descent step with size η ,

- 1. Draw a batch x_1^*, \ldots, x_n^* from the training samples
- 2. Draw random times t_1, \ldots, t_n uniformly on [0, T]
- 3. Draw the corresponding noises $\varepsilon_{t_1}, \ldots, \varepsilon_{t_n}$
- 4. Compute $\operatorname{grad}(\theta_k) = \nabla_{\theta} \frac{1}{n} \sum_{i=1}^n |\sigma_{t_i}^2 \varepsilon_{t_i} s_{\theta_k}(t_i, e^{-t_i} x_i^* + \epsilon_{t_i})|^2$
- 5. $\theta_{k+1} \theta_k = \eta \times \operatorname{grad}(\theta_k)$ (or any update rule)

Some important practical points on training Diffusion models.

- a Scaling and time parametrization e^{-t} can be dropped
- b Pure denoising formulation
- c Neural architecture: U-net

$$X_t = lpha X_0 + \sqrt{1-lpha^2} \xi$$
 has the same distribution as

with $\sigma^2 = (1 - \alpha^2)/\alpha^2$. We note \tilde{q}_{σ} the law of $X_0 + \sigma \xi$.

$$q_t(x) = e^t \tilde{q}_\sigma(x e^t)$$

Learning the family (q_t)

\Leftrightarrow

learning the family (\tilde{q}_{σ}) then rescaling

 $\frac{X_0 + \sigma \xi}{\alpha^{-1}}$

Practical matters: Pure denoising formulation

$$L(\theta) = \mathbb{E}_{\tau \sim \text{Unif}[0,T]} \left[|\alpha_{\tau}^{-1} \varepsilon_{\tau} - s_{\theta}(\tau, X_{\tau})|^2 \right]$$
(7)

Fact:

$$\begin{aligned} |\alpha^{-1}\varepsilon - s(x+\varepsilon)| &= \alpha|\varepsilon + x - x - \alpha^{-1}s(x+\varepsilon)| \\ &= \alpha^{-1}|-x - (\alpha s(x+\varepsilon) - (x+\varepsilon))| \\ &= \alpha^{-1}|x - \tilde{s}(x+\varepsilon)| \end{aligned}$$

$$\tilde{\mathcal{L}}(\theta) = \mathbb{E}\left[|X - \tilde{s}_{\theta}(\sigma, X + \sigma\varepsilon)|^{2}\right]$$

$$s_{\theta}(\sigma, x) = \frac{x - \tilde{s}_{\theta}(\sigma, x)}{\sigma^{2}}$$
(8)

Formulation (8) is more intuitive and efficient: \tilde{s} is a pure L^2 -denoiser.

•••

```
# one gradient descent step with mini-batches of size n_batch
for batch in dataloader:
   times = get_random_times(n) #(n,1)
   noise = get_random_noise(n) #(n,dim)
   scale = get_scales(times) #(n,1)
   corrupted_batch = batch + scale * noise
   denoised_batch = model(corrupted_batch, times)
   loss = ((denoised_batch - batch)**2).mean() # mean square error
   loss.backward()
   optimizer.step()
   optimizer.zero grad()
```

Practical matters: neural architecture

Choice of architecture to approximate the score $(t, x) \mapsto \nabla \log p_t$?

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

- time is embedded into each scale of the U-net
- convolutions + self-attention
- VERY BIG networks (Stable Diffusion 3 has 2 billion parameters)

Score-Based Diffusion Models III. Sampling

Suppose that we have a good approximation of the score function,

 $s_{\theta}(t,x) \approx \nabla \log q_t(x).$

 \Rightarrow We simply plug $s_{ heta}$ in the generative process $dY_t = (2s_{ heta}(t,Y_t) + Y_t)dt + \sqrt{2}dB_t \qquad Y_0 \sim N(0,I).$

For solving this SDE we use, for example, an Euler-Maruyama scheme:

$$Y_{k+1} = Y_k + \eta (2s_{ heta}(k,Y_k) + Y_k) + \sqrt{2\eta}\xi_k$$

- (ξ_k) are iid N(0, I).
- $\eta >$ 0 is the stepsize.

•••

sampling using the SDE with stepsize schedule step_list

```
time=0
samples = randn(dims) # init samples are Gaussian
```

```
for step in steps_list:
    samples += step * backward_model(t, samples) # add drift
    samples += (2 * step).sqrt() * randn(dims) # add noise
    t += step
```

We actually have access to $s_{\theta} \approx \nabla \log q_t$ for every t. The (q_t) form a connection between ρ_* and N(0, I) in the space of probability measures.

- **Q:** are there *other* processes (X_t) such that $X_t \sim q_t$?
- A: yes, a lot.

The SDE does much more than generating a process with q_t as marginals. It also has a very specific structure.

(Beware: mathematics incoming)

Recast Fokker-Planck as a (fake) Transport Equation

The Fokker-Planck equation associated with

$$dY_t = (2\nabla \log q_t(Y_t) + Y_t)dt + \sqrt{2}dB_t$$

reads

$$\partial_t q_t(x) = \Delta q_t(x) - \operatorname{div}(w_t q_t)$$

with $w_t(x) = 2\nabla \log q_t(x) + x$ and $\operatorname{div} = \nabla \cdot = \sum \partial_i$.

Define $v_t(x) = \nabla \log p_t(x) + x$. Then q_t satisfies the TE $\partial_t q_t = -\operatorname{div}(v_t q_t).$

Proof:

$$\begin{split} \Delta q_t - \operatorname{div}(w_t q_t) &= \operatorname{div} \nabla q_t - \operatorname{div}(w_t q_t) \\ &= \operatorname{div}(q_t \nabla \log q_t) - \operatorname{div}(w_t q_t) \\ &= \operatorname{div}(q_t (\nabla \log q_t - w_t)) = -\operatorname{div}(v_t q_t) \end{split}$$

ODE sampling: a general transport problem

Let $x: [0,1] \to \mathbb{R}^d$ be the solution of the ODE

$$x' = f_t(x)$$
 $x(0) \sim q_0$

where f_t : $\mathbb{R}^d \to \mathbb{R}^d$. Then, its marginal distribution satisfies

$$\partial_t q_t = -\operatorname{div}(f_t q_t)$$

Proof. Let φ be a smooth test function.

$$\int \varphi(x)\partial_t p_t(x)dx = \partial_t \mathbb{E}[\varphi(x(t))] = \mathbb{E}[\nabla\varphi(x(t)) \cdot x'(t)]$$
$$= \int \nabla\varphi(x) \cdot f_t(x)p_t(x)dx$$
$$= -\nabla\varphi(x)\operatorname{div}(f_t(x)p_t(x))dx$$

Choosing $f_t = v_t$ as above and plugging s_{θ} instead of $\nabla \log q_t$ yields another generative process with q_t as marginals:

 $X_0 \sim N(0,1)$ $dX_t = (s_\theta(t,X_t) + X_t)dt.$

- Only the initial condition is random. No noise is added during the generative process
- ODE solvers are better than SDE samplers (eg Runge-Kutta)
- The flow is *invertible*: two identical initial conditions yield two identical samples.
- Access to $q_T(x) \approx \rho_*(x)$ is feasible (next slide)

Choosing $f_t = v_t$ as above and plugging s_{θ} instead of $\nabla \log q_t$ yields another generative process with q_t as marginals:

 $X_0 \sim N(0,1)$ $dX_t = (s_\theta(t,X_t) + X_t)dt.$

- Only the initial condition is random. No noise is added during the generative process
- ODE solvers are better than SDE samplers (eg Runge-Kutta)
- The flow is *invertible*: two identical initial conditions yield two identical samples.
- Access to $q_T(x) \approx \rho_*(x)$ is feasible (next slide)

```
# sampling using the ODE with stepsize schedule step_list
time=0
samples = randn(dims) # init samples are Gaussian
for step in steps_list:
    samples += step * flow(t, samples) # Euler step
    # posstble second-order correction here : trapezoidal rule, etc
    t += step
```

Computing exact densities is easier with the ODE

(For simplicity $\dot{a}_t(x)$ = the time derivative and $a'_t(x)$ = space-derivative)

$$\dot{x}_t = v_t(x_t) \qquad \dot{q}_t(x) = -(v_t q_t)'(x)$$

$$\log \rho_*(x) \approx \log q_T(x) = \log q_0(x_0) - dT - \int_0^T \operatorname{div}(s_\theta)(s, x_{T-s}) ds$$

Proof:

$$\begin{aligned} \log \dot{q}_t(x_t) &= \frac{\dot{q}_t(x_t) + q_t'(x_t)\dot{x}_t}{q_t(x_t)} \\ &= \frac{-(v_t q_t)'(x_t) + q_t'(x_t)v_t(x_t)}{q_t(x_t)} \\ &= \frac{-v_t'(x_t)q_t(x_t) - q_t'(x_t)v_t(x_t) + q_t'(x_t)v_t(x_t)}{q_t(x_t)} \\ &= -v_t'(x_t). \end{aligned}$$

In our setting $v_t(x) \approx s_{ heta}(t,x) + x$ so $\operatorname{div}(v_t)(x) \approx \operatorname{div}(s_{ heta})(t,x) + d$

Leveraging the ODE: Flow Matching

Let us revert the point of view on ODE sampling.

There is a velocity field v_t such that the ODE $\dot{X}_t = v_t(X_t) \qquad x_0 \sim N(0, I)$ (9) satisfies $X_T \sim \rho_*$.

In practice, with the reverse-SDE formulation,

$$v_t(x) = x + \nabla \log q_t(x).$$

By learning $\nabla \log q_t$, we were able to learn the velocity field v_t .

Are there other fields v_t mapping N(0, I) to ρ_* through flow (9)? If so, could we **directly** learn such a flow v_t ?

Let v_t be any velocity field connecting $X_0 \sim q_0$ to $X_1 \sim \rho_*$. We could learn approximate v_t by a NN $s_{\theta}(t, x)$ using the loss

$$\int_0^1 \mathbb{E}\left[|s_ heta(t,X_t) - v_t(X_t)|^2
ight] dt$$

Problem: finding an explicit v_t transporting q_0 to q_1 is not doable in general.

Let v_t be any velocity field connecting $X_0 \sim q_0$ to $X_1 \sim \rho_*$. We could learn approximate v_t by a NN $s_{\theta}(t, x)$ using the loss

$$\int_0^1 \mathbb{E}\left[|s_ heta(t,X_t)-v_t(X_t)|^2
ight] dt$$

Problem: finding an explicit v_t transporting q_0 to q_1 is not doable in general.

Exemple: for diffusion maps, $v_t(x) = \nabla \log q_t(x) + x$ and $\nabla \log q_t$ depends on ρ_* .

Let ψ_t^x be a flow conditioned on ending at *x*:

$$\psi_t^x(z) = (1-t)z + tx.$$

Note that if $x_t = \psi_t^x(x_0)$ then x_t is a solution of the ODE

$$\dot{x}_t = x - \frac{x_t - tx}{1 - t} = v_t^x(x_t)$$

with

$$v_t^x(z) = x - (z - tx)/(1 - t).$$

We thus have a family of **conditional** velocity fields, with the ODE associated to v_t^x conditioned on ending at x.

Clearly, the averaged flows

$$v_t(y) = \mathbb{E}_{x \sim \rho_*}[v_t^x(y)]$$

transport any starting distribution $x_0 \sim q_0$ to the target distribution $x_1 \sim \rho_*$.

Connection

д

Let q_t^{\times} be the probability path associated with v_t^{\times} . Then, the mean path $q_t = \mathbb{E}q_t^{\times}$ is the probability path associated to the field

$$v_t(z) = \mathbb{E}\left[rac{v_t^X(z)q_t(z|X)}{q_t(z)}
ight]$$

Proof: Check that q_t satisfies the Transport Equation with by v_t !

$$\begin{aligned} t_t q_t(y) &= \partial_t \mathbb{E}_* q_t^X(y) = \mathbb{E}_* \partial_t q_t^X(y) \\ &= -\mathbb{E}_* \nabla \cdot v_t^X q_t^X(y) \\ &= -\mathbb{E}_* \nabla \cdot \left(\frac{v_t^X q_t^X(y)}{q_t(y)} \right) q_t(y) \\ &= -\nabla \cdot \left(\mathbb{E}_* \frac{v_t^X q_t^X(y)}{q_t(y)} \right) q_t(y) \\ &= -\nabla \cdot v_t q_t(y) \end{aligned}$$

Learning the flow v_t (intractable) and learning the conditional flows v_t^{\times} (tractable) lead to the same loss function!

$$\int_{0}^{1} \mathbb{E}_{X_{t} \sim q_{t}} \left[|s_{\theta}(t, X_{t}) - v_{t}(X_{t})|^{2} \right] dt$$

$$=$$

$$\operatorname{cst} + \int_{0}^{1} \mathbb{E}_{X_{t} \sim q_{t}} \left[|s_{\theta}(t, X_{t}) - v_{t}^{X}(X_{t})|^{2} \right] dt$$

Learning the flow v_t (intractable) and learning the conditional flows v_t^{\times} (tractable) lead to the same loss function!

This leads to a simpler, clearer way of learning ODE samplers.

Extra Techniques

- Noise schedule and scale schedule is important depending on the problem
- Predict-correct steps: alternating one ODE steps, one SDE step
- Don't add noise at the beginning and end
- $s_{\theta}(t, x) + \lambda \nabla \log D(c|x)$ where D is a trained classifier: helps controlling the sampling towards something
- Choosing the right ODE scheme can be tricky (Heun ? Runge-Kutt?)
- Classifier-free guidance was the game-changer for text-to-image generation
- Model Distillation is quite successful for Diffusion models and Flows!

Thanks for the invitation!

The first Diffusion paper by Sohl-Dickstein et al.

The seminal Diffusion paper by Ho et al.

"Diffusion beat GANs", fine engineering by Dhariwal and Nichol The SDE approach or this paper by the Song and Ermon team The best blog post on diffusions, by Yang Song Many point of views on diffusions by Sander Dieleman Diffusions simplified by a Nvidia team Flow Matching I: Albergo and Vanden-Eijnden Flow Matching II: Lipman et al.

Flow Matching III:Liu et al.