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Intro: Generative Modelling



x1∗ , . . . , x
n
∗ : dataset drawn from an unknown distribution ρ∗ (“target”)
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The two goals of generative modelling:

1. Generate ‘new’ samples from ρ∗ (direct problem)

2. Find a ‘good’ estimator ρ̂∗ for ρ∗ (inverse problem)
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Diffusion Models

I. Definition
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Bridging two distributions

Is there a way to find a random process (Xt) such that

1. X0 ∼ ρ∗ X1 ∼ N(0, I )

2. one can easily go from X1 to X0 and vice-versa

3. (Xt) has nice properties: easy to generate, direct definition, etc.

Vocabulary for the rest of the talk:

Noising/forward process: from ρ∗ at time t = 0 to N(0, I ) at

time t = T

Forward distribution: pt = law of Xt

Generative/backward process: from N(0, I ) at time t = 0 to ρ∗
at time t = T .

Backward distribution: qt = pT−t
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Simple Idea: progressively add noise to the sample.

X0 → X1 → · · · → XN where Xk+1 = Xk + εξk

Transition probabilities p(xk+1 | xk) = N(xk , ε
2).

We want to reverse the process, but

p(xk | xk+1) =
p(xk+1|xk)p(xk)

p(xk+1)

is not directly available.

A wild guess:

p(xk | xk+1) ≈ N(µk(xk), ε2)

for some (possibly complicated) function µk that could be learnt.
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Continuous Progressive noising

Consider the Ornstein-Uhlenbeck process

dXt = −Xtdt +
√

2dBt X0 ∼ ρ∗ (1)

Xt = e−tX0 +
√

2
∫ t

0
e2(s−t)dBs

Xt
law
= e−tX0 +

√
1− e−2t × N(0, I )→ N(0, I )

Take T large, say T ≈ 10. Then XT ≈ N(0, I ) (fast mixing).

Formula (1) gives a connection between the target ρ∗ and N(0, I ).

Can it be reversed?
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Generalization

More generally, for any f ,

dXt = −∇f (Xt) +
√

2dBt X0 ∼ ρ∗ (2)

gives a connection between ρ∗ and e−f /Z where Z =
∫
e−f (x)dx .

dXt = −α(t)Xtdt +
√

2σ(t)2dBt

α(t): scale schedule σ(t): noise schedule
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Time-reversal of continuous Markov processes

We note pt the law of Xt and qt = pT−t .

Define a new process by

dYt = (2∇ log qt(Yt) + Yt)dt +
√

2dBt Y0 ∼ pT . (3)

(XT−t)t∈[0,T ]
law
= (Yt)t∈[0,T ].

A general paper on time-reversal diffusions: Hausman and Pardoux.

8

https://www.i2m.univ-amu.fr/perso/etienne.pardoux/_media/trd.pdf


This gives a generative process as follows:

1) sample Y0 ∼ pT ≈ N(0, I )

2) solve (3) using a numerical scheme until time T

3) the endpoint YT should have distribution ≈ ρ∗.

Problem: in point 2), qt depends explicitly on ρ∗.
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Score-Based Diffusion Models

II. Training
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Samples from qt

Let us recall the generative process:

dYt = (2∇ log qt(Yt) + Yt)dt +
√

2dBt Y0 ∼ pT ≈ N(0, I ). (4)

We need access to ∇ log qt = ∇ log pT−t for every t ∈ [0,T ].

Remember that Xt has the same distribution as e−tX0 + N(0, 1− e−2t).

Using the samples x i∗ from ρ∗, we get samples from pt :

e−tx i∗ +
√

1− e−2tξi ∼ pt = qT−t

where ξi are iid N(0, 1).
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Denoising score matching

qt is a convolution between ρ∗ (rescaled) and a Gaussian!

⇒ we use DNS to estimate ∇ log qt .

(sθ): family of parametrized functions (neural networks)

DSM(θ) = E
∣∣sθ(Xt)− εt/(1− e−2t)

∣∣2
where Xt = e−tX0 + εt and εt ∼ N(0, (1− e−2t)I ).

(Reminder: DSM has the same minimizers as Ept [|∇ log pt(Xt)− sθ(Xt)|2])

For each t this gives an approximation sθt of ∇ log pt .

In practice we use only one network sθ(t, x).
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Writing the loss function

Let sθ : [0,T ]× Rd → Rd be a family of parametrized functions.

In practice we want to find ∇ log pt for all t so we can use the loss∫ T

0

E
[
|(1− e−2t)−1εt − sθ(t,Xt)|2dt

]
(5)

equivalently, we can approximate the integral with a Monte-Carlo

method:

L(θ) = Eτ∼Unif[0,T ]E
[
|(1− e−2τ )−1ετ − sθ(τ,Xτ )|2

]
(6)

Clearly if L(θ?) = 0 then sθ?(t, x) = ∇ log pt(x) for every t, x .
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T HEORET ICAL INT ERMEZZO
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DM can be seen as EBMs in the path space

• P = probability law of the process dXt = −αtdt + dBt

• Q = probability law of the process dXt = −βtdt + dBt

Girsanov’s theorem: P and Q are equivalent

We can compute the Kullback-Leibler divergence:

dKL(P | Q) = EP[log
dP
dQ

] =
1

2

∫ T

0

E[|αs − βs |2]ds.

Application.

P∗ = true generative process, αt(x) = 2∇ log qt(x) + x

Qθ = our generative process , βt(x) = 2sθ(t, x) + x

dKL(P∗ | Qθ) =
1

2

∫ T

0

E[|∇ log qs(Xs)− sθ(s,Xs)|2]ds.
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END OF T HE T HEORET ICAL INT ERMEZZO
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Step-by-step empirical minimization

For each gradient descent step with size η,

1. Draw a batch x∗1 , . . . , x
∗
n from the training samples

2. Draw random times t1, . . . , tn uniformly on [0,T ]

3. Draw the corresponding noises εt1 , . . . , εtn

4. Compute grad(θk) = ∇θ 1
n

∑n
i=1 |σ2

ti εti − sθk (ti , e
−ti x∗i + εti )|2

5. θk+1 − θk = η × grad(θk) (or any update rule)
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Some important practical points on training Diffusion models.

a Scaling and time parametrization e−t can be dropped

b Pure denoising formulation

c Neural architecture: U-net
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Practical matters: scaling + e−t can be dropped

Xt = αX0 +
√

1− α2ξ has the same distribution as
X0 + σξ

α−1

with σ2 = (1− α2)/α2. We note q̃σ the law of X0 + σξ.

qt(x) = et q̃σ(xet)

Learning the family (qt)

⇔

learning the family (q̃σ) then rescaling
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Practical matters: Pure denoising formulation

L(θ) = Eτ∼Unif[0,T ]

[
|α−1τ ετ − sθ(τ,Xτ )|2

]
(7)

Fact:

|α−1ε− s(x + ε)| = α|ε+ x − x − α−1s(x + ε)|
= α−1| − x − (αs(x + ε)− (x + ε))|
= α−1|x − s̃(x + ε)|

L̃(θ) = E
[
|X − s̃θ(σ,X + σε)|2

]
(8)

sθ(σ, x) =
x − s̃θ(σ, x)

σ2

Formulation (8) is more intuitive and efficient: s̃ is a pure L2-denoiser.
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Practical matters: neural architecture

Choice of architecture to approximate the score (t, x) 7→ ∇ log pt?

• time is embedded into each scale of the U-net

• convolutions + self-attention

• VERY BIG networks (Stable Diffusion 3 has 2 billion parameters)
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Score-Based Diffusion Models

III. Sampling
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SDE sampling

Suppose that we have a good approximation of the score function,

sθ(t, x) ≈ ∇ log qt(x).

⇒ We simply plug sθ in the generative process

dYt = (2sθ(t,Yt) + Yt)dt +
√

2dBt Y0 ∼ N(0, I ).

For solving this SDE we use, for example, an Euler-Maruyama scheme:

Yk+1 = Yk + η(2sθ(k ,Yk) + Yk) +
√

2ηξk

- (ξk) are iid N(0, I ).

- η > 0 is the stepsize.
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Is there better to do?

We actually have access to sθ ≈ ∇ log qt for every t. The (qt) form a

connection between ρ∗ and N(0, I ) in the space of probability measures.

Q: are there other processes (Xt) such that Xt ∼ qt?

A: yes, a lot.

The SDE does much more than generating a process with qt as

marginals. It also has a very specific structure.

(Beware: mathematics incoming)

26



Recast Fokker-Planck as a (fake) Transport Equation

The Fokker-Planck equation associated with

dYt = (2∇ log qt(Yt) + Yt)dt +
√

2dBt

reads

∂tqt(x) = ∆qt(x)− div(wtqt)

with wt(x) = 2∇ log qt(x) + x and div = ∇· =
∑
∂i .

Define vt(x) = ∇ log pt(x) + x . Then qt satisfies the TE

∂tqt = −div(vtqt).

Proof:

∆qt − div(wtqt) = div∇qt − div(wtqt)

= div(qt∇ log qt)− div(wtqt)

= div(qt(∇ log qt − wt)) = −div(vtqt)
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ODE sampling: a general transport problem

Let x : [0, 1]→ Rd be the solution of the ODE

x ′ = ft(x) x(0) ∼ q0.

where ft : Rd → Rd . Then, its marginal distribution satisfies

∂tqt = −div(ftqt)

Proof. Let ϕ be a smooth test function.∫
ϕ(x)∂tpt(x)dx = ∂tE[ϕ(x(t))] = E[∇ϕ(x(t)) · x ′(t)]

=

∫
∇ϕ(x) · ft(x)pt(x)dx

= −∇ϕ(x)div(ft(x)pt(x))dx .
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ODE samplers

Choosing ft = vt as above and plugging sθ instead of ∇ log qt
yields another generative process with qt as marginals:

X0 ∼ N(0, 1) dXt = (sθ(t,Xt) + Xt)dt.

• Only the initial condition is random. No noise is added during the

generative process

• ODE solvers are better than SDE samplers (eg Runge-Kutta)

• The flow is invertible: two identical initial conditions yield two

identical samples.

• Access to qT (x) ≈ ρ∗(x) is feasible (next slide)
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Computing exact densities is easier with the ODE

(For simplicity ȧt(x) = the time derivative and a′t(x) = space-derivative)

ẋt = vt(xt) q̇t(x) = −(vtqt)
′(x)

log ρ∗(x) ≈ log qT (x) = log q0(x0)− dT −
∫ T

0
div(sθ)(s, xT−s)ds

Proof:

˙log qt(xt) =
q̇t(xt) + q′t(xt)ẋt

qt(xt)

=
−(vtqt)

′(xt) + q′t(xt)vt(xt)

qt(xt)

=
−v ′t (xt)qt(xt)− q′t(xt)vt(xt) + q′t(xt)vt(xt)

qt(xt)

= −v ′t (xt).

In our setting vt(x) ≈ sθ(t, x) + x so div(vt)(x) ≈ div(sθ)(t, x) + d
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Interpolation
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Leveraging the ODE: Flow

Matching
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Let us revert the point of view on ODE sampling.

There is a velocity field vt such that the ODE

Ẋt = vt(Xt) x0 ∼ N(0, I ) (9)

satisfies XT ∼ ρ∗.

In practice, with the reverse-SDE formulation,

vt(x) = x +∇ log qt(x).

By learning ∇ log qt , we were able to learn the velocity field vt .

Are there other fields vt mapping N(0, I ) to ρ∗ through flow (9)?

If so, could we directly learn such a flow vt?
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Can you directly learn the flow?

Let vt be any velocity field connecting X0 ∼ q0 to X1 ∼ ρ∗. We could

learn approximate vt by a NN sθ(t, x) using the loss∫ 1

0

E
[
|sθ(t,Xt)− vt(Xt)|2

]
dt

Problem: finding an explicit vt transporting q0 to q1 is not doable

in general.

Exemple: for diffusion maps, vt(x) = ∇ log qt(x) + x and ∇ log qt
depends on ρ∗.
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Let ψx
t be a flow conditioned on ending at x :

ψx
t (z) = (1− t)z + tx .

Note that if xt = ψx
t (x0) then xt is a solution of the ODE

ẋt = x − xt − tx

1− t
= v x

t (xt)

with

v x
t (z) = x − (z − tx)/(1− t).

We thus have a family of conditional velocity fields, with the

ODE associated to v x
t conditioned on ending at x .

Clearly, the averaged flows

vt(y) = Ex∼ρ∗ [v x
t (y)]

transport any starting distribution x0 ∼ q0 to the target

distribution x1 ∼ ρ∗.
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Connection

Let qxt be the probability path associated with v x
t .

Then, the mean path qt = EqXt is the probability path associated

to the field

vt(z) = E
[
vX
t (z)qt(z |X )

qt(z)

]
.

Proof: Check that qt satisfies the Transport Equation with by vt !

∂tqt(y) = ∂tE∗qXt (y) = E∗∂tqXt (y)

= −E∗∇ · vX
t qXt (y)

= −E∗∇ ·
(
vX
t qXt (y)

qt(y)

)
qt(y)

= −∇ ·
(
E∗

vX
t qXt (y)

qt(y)

)
qt(y)

= −∇ · vtqt(y)
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Flow Matching [many teams in 2022]

Learning the flow vt (intractable) and learning the conditional flows v x
t

(tractable) lead to the same loss function!

∫ 1

0

EXt∼qt

[
|sθ(t,Xt)− vt(Xt)|2

]
dt

=

cst +

∫ 1

0

EXt∼qt

[∣∣sθ(t,Xt)− vX
t (Xt)

∣∣2] dt

This leads to a simpler, clearer way of learning ODE samplers.
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Extra Techniques
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Design choices are everything

• Noise schedule and scale schedule is important depending on the

problem

• Predict-correct steps: alternating one ODE steps, one SDE step

• Don’t add noise at the beginning and end

• sθ(t, x) + λ∇ logD(c |x) where D is a trained classifier: helps

controlling the sampling towards something

• Choosing the right ODE scheme can be tricky (Heun ?

Runge-Kutt?)

• Classifier-free guidance was the game-changer for text-to-image

generation

• Model Distillation is quite successful for Diffusion models and Flows!
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Thanks for the invitation!
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Some references (with links)

The first Diffusion paper by Sohl-Dickstein et al.

The seminal Diffusion paper by Ho et al.

”Diffusion beat GANs”, fine engineering by Dhariwal and Nichol

The SDE approach or this paper by the Song and Ermon team

The best blog post on diffusions, by Yang Song

Many point of views on diffusions by Sander Dieleman

Diffusions simplified by a Nvidia team

Flow Matching I: Albergo and Vanden-Eijnden

Flow Matching II: Lipman et al.

Flow Matching III:Liu et al.
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https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2101.09258
https://arxiv.org/abs/2011.13456
https://yang-song.net/blog/2021/score/
https://sander.ai/2023/07/20/perspectives.html
https://arxiv.org/pdf/2206.00364.pdf
https://arxiv.org/abs/2303.08797
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
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