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FACTS, PICTURES and QUESTIONS
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Examples of random graphs models

Erd6s-Rényi graphs:
m V=A{1,...,n}h
m Put each potential edge (u,v) in E independently with probability p.

Random trees:
m T, = set of trees on n vertices. |T,,| = n" 2 (Cayley’s formula)

m Take G uniformly at random in T,.

Random regular graphs
m G, 4 = set of d-regular graphs with n vertices.

m Take G uniformly at random in G, ;.
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Pictures: eigenvalues of uniform -regular graphs
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Pictures: eigenvalues of uniform -regular graphs

Histogram of eigenvalues of a uniform 3-regular graph on n = 10000 vertices
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Pictures: eigenvalues of uniform -regular graphs

Histogram of eigenvalues of a uniform 3-regular graph on n = 10000 vertices

Limiting distribution = Kesten-McKay distribution
Absolutely continuous, bounded support, bounded density
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Pictures: eigenvalues of Erd6s-Rényi graphs, DENSE case
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Pictures: eigenvalues of Erdés-Rényi graphs, DENSE case

Histogram of eigenvalues of an Erdés-Rényi graph
n = 10000 vertices, p = 1/2; the average degree is 1/2.

~150
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Pictures: eigenvalues of Erdés-Rényi graphs, DENSE case

Histogram of eigenvalues of an Erdés-Rényi graph
n = 10000 vertices, p = 1/2; the average degree is 1/2.

This is Wigner’s semicircle distribution (rescaled).
Closed form, absolutely continuous, bounded support, bounded density.
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Pictures: eigenvalues of Erd6s-Rényi graphs, SPARSE case
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Pictures: eigenvalues of Erd6s-Rényi graphs, SPARSE case

Histogram of eigenvalues of an Erdés-Rényi graph
n = 10000 vertices, p = c¢/n; the average degree is c.
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Pictures: eigenvalues of uniform trees
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Pictures: eigenvalues of uniform trees

Histogram of eigenvalues of a uniform tree on n = 10000 vertices
(averaged over 100 realizations).
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BENJAMINI-SCHRAMM CONVERGENCE
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Definition of BS convergence

9. = set of rooted graphs (g,0) with a countable set of vertices
(g,0)s= graph induced the ball of radius 7 around the root

Similarity between rooted graphs:
Sim((g,0),(g’,0")) = max{t € N: (g,0), and (g’,0’), are isomorphic}

Local distance on G..:

d((g>0)7 (glvol)) - (Sim((g70)7 (g/:ol)) + ])71 M
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Definition of BS convergence

9. = set of rooted graphs (g,0) with a countable set of vertices
(g,0)s= graph induced the ball of radius 7 around the root

Similarity between rooted graphs:
Sim((g,0),(g’,0")) = max{t € N: (g,0), and (g’,0’), are isomorphic}

Local distance on G..:

d((8,0),(g',0") = (Sim((g,0). (¢'.0") + 1)~ )

Definition. Let G, be a sequence of finite graphs.

m We root them uniformly at random: o, ~ Uniform(V,,) and take the connected
component of the root, noted G, (0,,).

m (Gy,0,) is now a random rooted (finite) graph.

m We say that G, converges in the Benjamini-Schramm sense towards some
random rooted graph (G, 0) if the distribution of (Gn,0,) converges weakly to
the distribution of (G, 0).
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Some examples of local weak convergence

Random graph model
Erd6s-Rényi (n,c/n)
Uniform trees
Random d-regular graphs

Preferential attachment

Benjamini-Schramm limit
Galton-Watson Poisson(c)
Skeleton tree
d-regular tree

Polya point-tree
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Eigenvalues of graphs

G = finite graph with n vertices, with adjacency matrix A
Als. .., Ay = eigenvalues of A

UG, = %Z?: | 6, Empirical Spectral Distribution
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Spectral continuity

Kolmogorov-Smirnov continuity [Abért, Thom, Virag, 2015]

Suppose that

G, 2, (G,0)

n—o0

where (G, 0) is a random rooted graph with distribution p.
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Spectral continuity

Kolmogorov-Smirnov continuity [Abért, Thom, Virag, 2015]

Suppose that

G, 2, (G,0)

n—o0

where (G, 0) is a random rooted graph with distribution p.

Then there is a probability distribution (i, such that

sup|FuG” (1) —Fy, (0 —0 2)
teR

where F is the cumulative distribution function.
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Representation of the limiting distribution

(G,0) = rooted graph and let A be its adjacency operator on £>(V).
(e, : v € V) = canonical basis of (*(V)

Herglotz theory

There is a probability measure /1, such that for any z € C.

(eorA=2)eo) = [ T HiG. (@A) )

Representation of the limiting distribution

Suppose that G, — (B9), (G,0) with distribution p. Then pg, — pp and

B =Ep[tc)- “)

U = notation for 1, with p = GaltonWatson(Poisson(c)).
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SOME RESULTS
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Convergence towards semi-circle

Histograms of eigenvalues of Erdds-Rényi graphs with parameter ¢/n and size
n = 5000 (average over 100 realizations):

- o A A

(@)c=5 (b)c=38 (©)ec=10 (d) =30
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Convergence towards semi-circle

Histograms of eigenvalues of Erdds-Rényi graphs with parameter ¢/n and size
n = 5000 (average over 100 realizations):

(e)c=5 fHe=8 (g)c=10 (h) ¢ =30

[Jung, Lee, 2017]

5] (—)> Wigner semicircle distribution
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Atom at zero
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Atom at zero

‘Histogram’ of (. with ¢ =3
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Atom at zero: computation is feasible

[Bordenave, Lelarge, Salez 2015]: atom at zero for Poisson(c) GW trees

pe({0}) =e ““+cae™“+a—1

where « is the smallest solution of x =e =" in (0, 1).
+ generalization to any unimodular GW trees

[Bauer, Golinelli, 2000]: atom at zero for the skeleton tree

:uskel({o}) = ZB =1

where 8 ~ 0.567 ... is the unique solution in (0,1) of x =™ *.
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Existence of a continuous part
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Existence of a continuous part
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Existence of a continuous part

[Bordenave, Sen, Virag, 2015]

U has a continuous part

4

c>1

[Arras, Bordenave, 2021]

For any ¢ there is a c¢ such that if ¢ > c¢, then the absolutely continuous part of /L.
has mass > 1 —¢.
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Atoms of unimodular trees: where are they?

‘Histogram’ of (1, with ¢ =1
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Atoms of unimodular trees

[Salez 2016]

T= some unimodular random tree with distribution p
Mo =E[tr,)]

{atoms of u,} C {totally real algebraic integers } := A

A =roots of polynomial P with integer coefficients, with only real roots.
A is dense in R.

Consequences:
> atoms of . = A
> atoms of g = A

[Bencs, Mészdros, 2020] : generalization to matching measures of graphs.
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What happens around zero ?
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Extra simulations in log scale
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What happens at zero ?

Definition: we say that a measure p has extended states at E if

fim MUE—2.E+ &) ~ u({E})
£—0 2¢e

[C, Salez, 2018]

U has extended states at zero

>0

54

c>e€

+ easy generalization [C, 19+]: L. has no extended states at zero.
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I don’t have answers to these questions

*
*
e
*

Does L4 have a continuous part ?
What is the nature of the continuous part of fi.?
Is there a unimodular tree with singular continuous part?

Is there a unimodular tree with only one semi-infinite path and a continuous
part?
What is the value of every atom of 1.7

What about the support of these measures, or the support of their continuous
parts?
Can you translate some Anderson localization results in this setup?
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A reachable (?) conjecture

liameter

Let 7, be a uniform tree on 7 vertices.
There is a constant ¢ such that whp the number of distinct eigenvalues of 7, is > cn.

If true, then L has a continuous part (Justin Salez).
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(le plus vieil arbre de Versailles, planté en 1668)
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