Spectra of sparse random graphs

Simon Coste - LMV, 2021

FACTS, PICTURES and QUESTIONS

Ι

Erdős-Rényi graphs:

- $\bullet V = \{1, \ldots, n\}.$
- Put each potential edge (u, v) in *E* independently with probability *p*.

Random trees:

- \mathcal{T}_n = set of trees on *n* vertices. $|\mathcal{T}_n| = n^{n-2}$ (Cayley's formula)
- Take *G* uniformly at random in \mathcal{T}_n .

Random regular graphs

- $G_{n,d}$ = set of *d*-regular graphs with *n* vertices.
- Take *G* uniformly at random in $\mathcal{G}_{n,d}$.

Pictures: eigenvalues of uniform 3-regular graphs

Pictures: eigenvalues of uniform 3-regular graphs

Histogram of eigenvalues of a uniform 3-regular graph on n = 10000 vertices

Pictures: eigenvalues of uniform 3-regular graphs

Histogram of eigenvalues of a uniform 3-regular graph on n = 10000 vertices

Limiting distribution = Kesten-McKay distribution Absolutely continuous, bounded support, bounded density

Pictures: eigenvalues of Erdős-Rényi graphs, DENSE case

Pictures: eigenvalues of Erdős-Rényi graphs, DENSE case

Histogram of eigenvalues of an Erdős-Rényi graph n = 10000 vertices, p = 1/2; the average degree is n/2. -150-100-50Ô. 50 100 150

Pictures: eigenvalues of Erdős-Rényi graphs, DENSE case

Histogram of eigenvalues of an Erdős-Rényi graph n = 10000 vertices, p = 1/2; the average degree is n/2.

This is Wigner's semicircle distribution (rescaled). Closed form, absolutely continuous, bounded support, bounded density.

Pictures: eigenvalues of Erdős-Rényi graphs, SPARSE case

Pictures: eigenvalues of Erdős-Rényi graphs, SPARSE case

Pictures: eigenvalues of uniform trees

Histogram of eigenvalues of a uniform tree on n = 10000 vertices (averaged over 100 realizations).

Π

BENJAMINI-SCHRAMM CONVERGENCE

 \mathcal{G}_* = set of rooted graphs (g, o) with a countable set of vertices $(g, o)_t$ = graph induced the ball of radius *t* around the root

Similarity between rooted graphs: $Sim((g,o), (g', o')) = \max\{t \in \mathbb{N} : (g, o)_t \text{ and } (g', o')_t \text{ are isomorphic}\}$

Local distance on \mathcal{G}_* :

$$d((g,o),(g',o')) = (\operatorname{Sim}((g,o),(g',o')) + 1)^{-1}$$
(1)

 \mathcal{G}_* = set of rooted graphs (g, o) with a countable set of vertices $(g, o)_t$ = graph induced the ball of radius *t* around the root

Similarity between rooted graphs: $Sim((g,o), (g', o')) = \max\{t \in \mathbb{N} : (g,o)_t \text{ and } (g',o')_t \text{ are isomorphic}\}$

Local distance on \mathcal{G}_* :

$$d((g,o),(g',o')) = (\operatorname{Sim}((g,o),(g',o')) + 1)^{-1}$$
(1)

Definition. Let G_n be a sequence of finite graphs.

- We root them uniformly at random: $o_n \sim \text{Uniform}(V_n)$ and take the connected component of the root, noted $G_n(o_n)$.
- (G_n, o_n) is now a random rooted (finite) graph.
- We say that G_n converges in the Benjamini-Schramm sense towards some random rooted graph (G, o) if the distribution of (Gn, o_n) converges weakly to the distribution of (G, o).

Random graph model	Benja
Erdős-Rényi $(n, c/n)$	Galto
Uniform trees	
Random <i>d</i> -regular graphs	
Preferential attachment	

Benjamini-Schramm limit

Galton-Watson Poisson(c)

Skeleton tree

d-regular tree

Polya point-tree

G = finite graph with *n* vertices, with adjacency matrix A

 $\lambda_1, \ldots, \lambda_n$ = eigenvalues of *A*

 $\mu_{G_n} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$ Empirical Spectral Distribution

Kolmogorov-Smirnov continuity [Abért, Thom, Virag, 2015]

Suppose that

 $G_n \xrightarrow[n \to \infty]{(BS)} (G, o)$

where (G, o) is a random rooted graph with distribution ρ .

Kolmogorov-Smirnov continuity [Abért, Thom, Virag, 2015]

Suppose that

 $G_n \xrightarrow[n \to \infty]{(BS)} (G, o)$

where (G, o) is a random rooted graph with distribution ρ .

Then there is a probability distribution μ_{ρ} such that

 $\sup_{t\in\mathbb{R}}|F_{\mu_{G_n}}(t)-F_{\mu_p}(t)|\to 0$ (2)

where *F* is the cumulative distribution function.

(G, o) = rooted graph and let *A* be its adjacency operator on $\ell^2(V)$. $(e_v : v \in V)$ = canonical basis of $\ell^2(V)$

Herglotz theory

There is a probability measure $\mu_{(G,o)}$ such that for any $z \in \mathbb{C}_+$

$$\langle e_o, (A-z)^{-1} e_o \rangle = \int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_{(G,o)}(\mathrm{d}\lambda).$$
 (3)

Representation of the limiting distribution

Suppose that $G_n \xrightarrow{(BS)} (G, o)$ with distribution ρ . Then $\mu_{G_n} \to \mu_{\rho}$ and

$$\boldsymbol{\mu}_{\boldsymbol{\rho}} = \mathbf{E}_{\boldsymbol{\rho}}[\boldsymbol{\mu}_{(G,o)}]. \tag{4}$$

 μ_c = notation for μ_{ρ} with ρ = GaltonWatson(Poisson(c)).

III

SOME RESULTS

Histograms of eigenvalues of Erdős-Rényi graphs with parameter c/n and size n = 5000 (average over 100 realizations):

Histograms of eigenvalues of Erdős-Rényi graphs with parameter c/n and size n = 5000 (average over 100 realizations):

[Jung, Lee, 2017]

$$\frac{\mu_c}{\sqrt{c}} \xrightarrow[c \to \infty]{(d)}$$
 Wigner semicircle distribution

[Bordenave, Lelarge, Salez 2015]: atom at zero for Poisson(c) GW trees

$$\mu_c(\{0\}) = e^{-c\alpha} + c\alpha e^{-c\alpha} + \alpha - 1$$

where α is the smallest solution of $x = e^{-ce^{-cx}}$ in (0,1). + generalization to any unimodular GW trees

[Bauer, Golinelli, 2000]: atom at zero for the skeleton tree

 $\mu_{\rm skel}(\{0\}) = 2\beta - 1$

where $\beta \approx 0.567...$ is the unique solution in (0,1) of $x = e^{-x}$.

Existence of a continuous part

Existence of a continuous part

[Bordenave, Sen, Virag, 2015]

μ_c has a continuous part

⇔

c > 1

[Arras, Bordenave, 2021]

For any ε there is a c_{ε} such that if $c > c_{\varepsilon}$, then the **absolutely continuous** part of μ_c has mass $> 1 - \varepsilon$.

Atoms of **unimodular** trees: where are they?

[Salez 2016]

T = some unimodular random tree with distribution ρ $\mu \rho = \mathbf{E}[\mu_{(T,o)}]$

{atoms of μ_{ρ} } \subset {totally real algebraic integers } := A

A = roots of polynomial *P* with integer coefficients, with only real roots. A is dense in \mathbb{R} .

Consequences:

- \Rightarrow atoms of $\mu_c = \mathbb{A}$
- \Rightarrow atoms of $\mu_{\text{skel}} = \mathbb{A}$

[Bencs, Mészáros, 2020] : generalization to matching measures of graphs.

What happens **around** zero ?

Extra simulations in log scale

Definition: we say that a measure μ has extended states at *E* if

$$\lim_{\varepsilon \to 0} \frac{\mu((E - \varepsilon, E + \varepsilon)) - \mu(\{E\})}{2\varepsilon} > 0$$

+ easy generalization [C, 19+]: μ_{skel} has no extended states at zero.

- ★ Does μ_{skel} have a continuous part ?
- ★ What is the nature of the continuous part of μ_c ?
- ★ Is there a unimodular tree with singular continuous part?
- ☆ Is there a unimodular tree with only one semi-infinite path and a continuous part?
- ★ What is the value of every atom of μ_c ?
- ☆ What about the support of these measures, or the support of their continuous parts?
- * Can you translate some Anderson localization results in this setup?

Trees have a linear spectral diameter

Let T_n be a uniform tree on *n* vertices.

There is a constant *c* such that whp the number of distinct eigenvalues of T_n is $\ge cn$.

If true, then μ_{skel} has a continuous part (Justin Salez).

Merci !

(le plus vieil arbre de Versailles, planté en 1668)