Spectra of sparse random graphs

Simon Coste — LMV, 2021
FACTS, PICTURES and QUESTIONS
Examples of random graphs models

Erdős-Rényi graphs:

- $V = \{1, \ldots, n\}$.
- Put each potential edge (u, v) in E independently with probability p.

Random trees:

- $\mathcal{T}_n =$ set of trees on n vertices. $|\mathcal{T}_n| = n^{n-2}$ (Cayley’s formula)
- Take G uniformly at random in \mathcal{T}_n.

Random regular graphs

- $\mathcal{G}_{n,d} =$ set of d-regular graphs with n vertices.
- Take G uniformly at random in $\mathcal{G}_{n,d}$.
Histogram of eigenvalues of a uniform 3-regular graph on \(n = 10000 \) vertices

Limiting distribution = Kesten-McKay distribution

Absolutely continuous, bounded support, bounded density
Histogram of eigenvalues of a uniform 3-regular graph on $n = 10000$ vertices

Limiting distribution = Kesten-McKay distribution

Absolutely continuous, bounded support, bounded density
Histogram of eigenvalues of a uniform 3-regular graph on $n = 10000$ vertices

Limiting distribution = Kesten-McKay distribution
Absolutely continuous, bounded support, bounded density

\[\frac{1}{|x| < 2\sqrt{d-1}} \times \frac{d\sqrt{4(d-1) - x^2}}{2\pi(d^2 - x^2)} \]
Histogram of eigenvalues of an Erdős-Rényi graph

$n = 10000$ vertices, $p = 1/2$; the average degree is $n/2$.

This is Wigner's semicircle distribution (rescaled).

Closed form, absolutely continuous, bounded support, bounded density.
Histogram of eigenvalues of an Erdős-Rényi graph

$n = 10000$ vertices, $p = 1/2$; the average degree is $n/2$.

This is Wigner's semicircle distribution (rescaled).

Closed form, absolutely continuous, bounded support, bounded density.
Pictures: eigenvalues of Erdős-Rényi graphs, DENSE case

Histogram of eigenvalues of an Erdős-Rényi graph

$n = 10000$ vertices, $p = 1/2$; the average degree is $n/2$.

This is Wigner’s semicircle distribution (rescaled).
Closed form, absolutely continuous, bounded support, bounded density.
Pictures: eigenvalues of Erdős-Rényi graphs, SPARSE case

$n = 10000$ vertices, $p = c/n$; the average degree is c.

$c = 1$

$c = 2$

$c = 3$

$c = 4$
Histogram of eigenvalues of an Erdős-Rényi graph

$n = 10000$ vertices, $p = c/n$; the average degree is c.

$c = 1$

$c = 2$

$c = 3$

$c = 4$
Pictures: eigenvalues of uniform trees
Histogram of eigenvalues of a uniform tree on $n = 10000$ vertices (averaged over 100 realizations).
II

BENJAMINI-SCHRAMM CONVERGENCE
Definition of BS convergence

\[G_* = \text{set of rooted graphs } (g,o) \text{ with a countable set of vertices} \]
\[(g,o)_t = \text{graph induced the ball of radius } t \text{ around the root} \]

Similarity between rooted graphs:
\[\text{Sim}((g,o),(g',o')) = \max\{t \in \mathbb{N} : (g,o)_t \text{ and } (g',o')_t \text{ are isomorphic}\} \]

Local distance on \(G_* \):
\[d((g,o),(g',o')) = (\text{Sim}((g,o),(g',o')) + 1)^{-1} \quad (1) \]
Definition of BS convergence

\[\mathcal{G}_* = \text{set of rooted graphs } (g, o) \text{ with a countable set of vertices} \]

\[(g, o)_t = \text{graph induced the ball of radius } t \text{ around the root} \]

Similarity between rooted graphs:

\[\text{Sim}((g, o), (g', o')) = \max\{t \in \mathbb{N} : (g, o)_t \text{ and } (g', o')_t \text{ are isomorphic}\} \]

Local distance on \(\mathcal{G}_* \):

\[d((g, o), (g', o')) = (\text{Sim}((g, o), (g', o')) + 1)^{-1} \]

(1)

Definition. Let \(G_n \) be a sequence of finite graphs.

- We root them uniformly at random: \(o_n \sim \text{Uniform}(V_n) \) and take the connected component of the root, noted \(G_n(o_n) \).
- \((G_n, o_n) \) is now a random rooted (finite) graph.
- We say that \(G_n \) **converges in the Benjamini-Schramm sense** towards some random rooted graph \((G, o) \) if the distribution of \((G_n, o_n) \) converges weakly to the distribution of \((G, o) \).
Some examples of local weak convergence

<table>
<thead>
<tr>
<th>Random graph model</th>
<th>Benjamini-Schramm limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdős-Rényi ((n, c/n))</td>
<td>Galton-Watson Poisson((c))</td>
</tr>
<tr>
<td>Uniform trees</td>
<td>Skeleton tree</td>
</tr>
<tr>
<td>Random (d)-regular graphs</td>
<td>(d)-regular tree</td>
</tr>
<tr>
<td>Preferential attachment</td>
<td>Polya point-tree</td>
</tr>
</tbody>
</table>
Eigenvalues of graphs

\(G \) = finite graph with \(n \) vertices, with adjacency matrix \(A \)

\(\lambda_1, \ldots, \lambda_n = \text{eigenvalues of } A \)

\[\mu_{G_n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i} \]

Empirical Spectral Distribution
Suppose that

\[G_n \xrightarrow{(BS)} (G, o) \]

where \((G, o)\) is a random rooted graph with distribution \(\rho\).
Spectral continuity

Kolmogorov-Smirnov continuity [Abért, Thom, Virag, 2015]

Suppose that

\[G_n \xrightarrow{(BS)\;n \to \infty} (G,o) \]

where \((G,o)\) is a random rooted graph with distribution \(\rho\).

Then there is a probability distribution \(\mu_{\rho}\) such that

\[
\sup_{t \in \mathbb{R}} |F_{\mu_{G_n}}(t) - F_{\mu_{\rho}}(t)| \to 0
\]

where \(F\) is the cumulative distribution function.
\((G, o) = \text{rooted graph and let } A \text{ be its adjacency operator on } \ell^2(V).\n\]
\[(e_v : v \in V) = \text{canonical basis of } \ell^2(V)\n\]

Herglotz theory

There is a probability measure \(\mu_{(G,o)}\) such that for any \(z \in \mathbb{C}_+\)

\[
\langle e_o, (A - z)^{-1}e_o \rangle = \int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_{(G,o)}(d\lambda).
\]

(3)

Representation of the limiting distribution

Suppose that \(G_n \xrightarrow{(BS)} (G, o)\) with distribution \(\rho\). Then \(\mu_{G_n} \rightarrow \mu_\rho\) and

\[
\mu_\rho = \mathbb{E}_\rho[\mu_{(G,o)}].
\]

(4)

\(\mu_c = \text{notation for } \mu_\rho \text{ with } \rho = \text{GaltonWatson}(\text{Poisson}(c)).\)
III

SOME RESULTS
Convergence towards semi-circle

Histograms of eigenvalues of Erdős-Rényi graphs with parameter c/n and size $n = 5000$ (average over 100 realizations):

(a) $c = 5$
(b) $c = 8$
(c) $c = 10$
(d) $c = 30$

$\mu_c \sqrt{c} (d) \xrightarrow{c \to \infty} Wigner$ semicircle distribution
Convergence towards semi-circle

Histograms of eigenvalues of Erdős-Rényi graphs with parameter c/n and size $n = 5000$ (average over 100 realizations):

(e) $c = 5$
(f) $c = 8$
(g) $c = 10$
(h) $c = 30$

[Jung, Lee, 2017]

$$\frac{\mu_c}{\sqrt{c}} \xrightarrow{(d)} Wigner \text{ semicircle distribution}$$
Atom at zero
‘Histogram’ of μ_c with $c = 3$
Atom at zero: computation is feasible

[Bordenave, Lelarge, Salez 2015]: atom at zero for Poisson(c) GW trees

\[\mu_c(\{0\}) = e^{-c\alpha} + c\alpha e^{-c\alpha} + \alpha - 1 \]

where \(\alpha \) is the smallest solution of \(x = e^{-ce^{-cx}} \) in \((0, 1)\).

+ generalization to any unimodular GW trees

[Bauer, Golinelli, 2000]: atom at zero for the skeleton tree

\[\mu_{skel}(\{0\}) = 2\beta - 1 \]

where \(\beta \approx 0.567 \ldots \) is the unique solution in \((0, 1)\) of \(x = e^{-x} \).
Existence of a continuous part
Existence of a continuous part

- $c = 1$
- $c = 2$
- $c = 3$
- $c = 4$
<table>
<thead>
<tr>
<th>Existence of a continuous part</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Bordenave, Sen, Virag, 2015]</td>
</tr>
<tr>
<td>μ_c has a continuous part</td>
</tr>
<tr>
<td>\Leftrightarrow</td>
</tr>
<tr>
<td>$c > 1$</td>
</tr>
<tr>
<td>[Arras, Bordenave, 2021]</td>
</tr>
<tr>
<td>For any ϵ there is a c_ϵ such that if $c > c_\epsilon$, then the absolutely continuous part of μ_c has mass $> 1 - \epsilon$.</td>
</tr>
</tbody>
</table>
Atoms of unimodular trees: where are they?

‘Histogram’ of μ_c with $c = 1$
Atoms of **unimodular** trees

[Salez 2016]

\[T = \text{some unimodular random tree with distribution } \rho \]
\[\mu_\rho = \mathbf{E}[\mu_{(T,o)}] \]

\{\text{atoms of } \mu_\rho\} \subset \{\text{totally real algebraic integers }\} := \mathbb{A}

\[\mathbb{A} = \text{roots of polynomial } P \text{ with integer coefficients, with only real roots.} \]
\[\mathbb{A} \text{ is dense in } \mathbb{R}. \]

Consequences:

\[\Rightarrow \text{ atoms of } \mu_c = \mathbb{A} \]
\[\Rightarrow \text{ atoms of } \mu_{\text{ske}} = \mathbb{A} \]

What happens **around** zero?
Extra simulations in log scale

\[c = 2 \]

\[c = 2, 6 \]

\[c = 2, 8 \]

\[c = 3 \]
Definition: we say that a measure μ has extended states at E if

$$\lim_{\varepsilon \to 0} \frac{\mu((E-\varepsilon, E+\varepsilon)) - \mu(\{E\})}{2\varepsilon} > 0$$

[C, Salez, 2018]

μ_c has extended states at zero

\iff

$c > e$

+ easy generalization [C, 19+]: μ_{skep} has no extended states at zero.
I don’t have answers to these questions

★ Does μ_{skel} have a continuous part?
★ What is the nature of the continuous part of μ_c?
★ Is there a unimodular tree with singular continuous part?
★ Is there a unimodular tree with only one semi-infinite path and a continuous part?
★ What is the value of every atom of μ_c?
★ What about the support of these measures, or the support of their continuous parts?
★ Can you translate some Anderson localization results in this setup?
A reachable (?) conjecture

Trees have a linear spectral diameter

Let T_n be a uniform tree on n vertices. There is a constant c such that whp the number of distinct eigenvalues of T_n is $\geq cn$.

If true, then μ_{ske1} has a continuous part (Justin Salez).
Merci !

(le plus vieil arbre de Versailles, planté en 1668)