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I

FACTS, PICTURES and QUESTIONS
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Examples of random graphs models

Erdős-Rényi graphs:

V = {1, . . . ,n}.
Put each potential edge (u,v) in E independently with probability p.

Random trees:

Tn = set of trees on n vertices. |Tn|= nn−2 (Cayley’s formula)

Take G uniformly at random in Tn.

Random regular graphs

Gn,d = set of d-regular graphs with n vertices.

Take G uniformly at random in Gn,d .
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Pictures: eigenvalues of uniform 3-regular graphs

Histogram of eigenvalues of a uniform 3-regular graph on n = 10000 vertices

Limiting distribution = Kesten-McKay distribution
Absolutely continuous, bounded support, bounded density
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Pictures: eigenvalues of Erdős-Rényi graphs, DENSE case

Histogram of eigenvalues of an Erdős-Rényi graph
n = 10000 vertices, p = 1/2; the average degree is n/2.

This is Wigner’s semicircle distribution (rescaled).
Closed form, absolutely continuous, bounded support, bounded density.
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Pictures: eigenvalues of Erdős-Rényi graphs, SPARSE case

Histogram of eigenvalues of an Erdős-Rényi graph
n = 10000 vertices, p = c/n; the average degree is c.
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Pictures: eigenvalues of uniform trees

Histogram of eigenvalues of a uniform tree on n = 10000 vertices
(averaged over 100 realizations).
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Pictures: eigenvalues of uniform trees

Histogram of eigenvalues of a uniform tree on n = 10000 vertices
(averaged over 100 realizations).
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II

BENJAMINI-SCHRAMM CONVERGENCE
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Definition of BS convergence

G∗ = set of rooted graphs (g,o) with a countable set of vertices
(g,o)t= graph induced the ball of radius t around the root

Similarity between rooted graphs:
Sim((g,o),(g′,o′)) = max{t ∈ N : (g,o)t and (g′,o′)t are isomorphic}

Local distance on G∗:

d((g,o),(g′,o′)) = (Sim((g,o),(g′,o′))+1)−1 (1)

Definition. Let Gn be a sequence of finite graphs.

We root them uniformly at random: on ∼ Uniform(Vn) and take the connected
component of the root, noted Gn(on).

(Gn,on) is now a random rooted (finite) graph.

We say that Gn converges in the Benjamini-Schramm sense towards some
random rooted graph (G,o) if the distribution of (Gn,on) converges weakly to
the distribution of (G,o).
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Some examples of local weak convergence

Random graph model Benjamini-Schramm limit

Erdős-Rényi (n,c/n) Galton-Watson Poisson(c)

Uniform trees Skeleton tree

Random d-regular graphs d-regular tree

Preferential attachment Polya point-tree
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Eigenvalues of graphs

G = finite graph with n vertices, with adjacency matrix A

λ1, . . . ,λn = eigenvalues of A

µGn =
1
n ∑

n
i=1 δλi

Empirical Spectral Distribution
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Spectral continuity

Kolmogorov-Smirnov continuity [Abért, Thom, Virag, 2015]

Suppose that

Gn
(BS)−−−→
n→∞

(G,o)

where (G,o) is a random rooted graph with distribution ρ .

Then there is a probability distribution µρ such that

sup
t∈R
|FµGn

(t)−Fµρ
(t)| → 0 (2)

where F is the cumulative distribution function.
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Representation of the limiting distribution

(G,o) = rooted graph and let A be its adjacency operator on `2(V).
(ev : v ∈ V) = canonical basis of `2(V)

Herglotz theory

There is a probability measure µ(G,o) such that for any z ∈ C+

〈eo,(A− z)−1eo〉=
∫
R

1
λ − z

µ(G,o)(dλ ). (3)

Representation of the limiting distribution

Suppose that Gn
(BS)−−−→ (G,o) with distribution ρ . Then µGn → µρ and

µρ = Eρ [µ(G,o)]. (4)

µc = notation for µρ with ρ = GaltonWatson(Poisson(c)).
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III

SOME RESULTS
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Convergence towards semi-circle

Histograms of eigenvalues of Erdős-Rényi graphs with parameter c/n and size
n = 5000 (average over 100 realizations):
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[Jung, Lee, 2017]
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Convergence towards semi-circle

Histograms of eigenvalues of Erdős-Rényi graphs with parameter c/n and size
n = 5000 (average over 100 realizations):
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[Jung, Lee, 2017]
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Atom at zero

‘Histogram’ of µc with c = 3
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Atom at zero: computation is feasible

[Bordenave, Lelarge, Salez 2015]: atom at zero for Poisson(c) GW trees

µc({0}) = e−cα + cαe−cα +α−1

where α is the smallest solution of x = e−ce−cx
in (0,1).

+ generalization to any unimodular GW trees

[Bauer, Golinelli, 2000]: atom at zero for the skeleton tree

µskel({0}) = 2β −1

where β ≈ 0.567 . . . is the unique solution in (0,1) of x = e−x.
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Existence of a continuous part
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Existence of a continuous part

[Bordenave, Sen, Virag, 2015]

µc has a continuous part

⇔

c > 1

[Arras, Bordenave, 2021]

For any ε there is a cε such that if c > cε , then the absolutely continuous part of µc
has mass > 1− ε .
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Atoms of unimodular trees: where are they?

‘Histogram’ of µc with c = 1
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Atoms of unimodular trees

[Salez 2016]

T= some unimodular random tree with distribution ρ

µρ = E[µ(T,o)]

{atoms of µρ} ⊂ {totally real algebraic integers } := A

A = roots of polynomial P with integer coefficients, with only real roots.
A is dense in R.

Consequences:

ê atoms of µc = A
ê atoms of µskel = A

[Bencs, Mészáros, 2020] : generalization to matching measures of graphs.
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What happens around zero ?
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Extra simulations in log scale
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What happens at zero ?

Definition: we say that a measure µ has extended states at E if

lim
ε→0

µ((E− ε,E+ ε))−µ({E})
2ε

> 0

[C, Salez, 2018]

µc has extended states at zero

⇔

c > e

+ easy generalization [C, 19+]: µskel has no extended states at zero.
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I don’t have answers to these questions

K Does µskel have a continuous part ?

L What is the nature of the continuous part of µc?

M Is there a unimodular tree with singular continuous part?

N Is there a unimodular tree with only one semi-infinite path and a continuous
part?

N What is the value of every atom of µc?

P What about the support of these measures, or the support of their continuous
parts?

Q Can you translate some Anderson localization results in this setup?
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A reachable (?) conjecture

Trees have a linear spectral diameter

Let Tn be a uniform tree on n vertices.
There is a constant c such that whp the number of distinct eigenvalues of Tn is > cn.

If true, then µskel has a continuous part (Justin Salez).
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Merci !

(le plus vieil arbre de Versailles, planté en 1668)


