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Abstract

This is a general review on hyperuniform point processes, also called superhomogeneous in the physics
litterature. I describe the general theory of spectral analysis of correlations, the local-weak convergence
setting for finite samples, and the fluctuations properties of hyperuniform processes. Some topics in which
recent advances were made are extensively developped, such as: the links between rigidity and hyper-
uniformity, the maximal rigidities of stealthy hyperuniform processes, and the properties of perturbed
lattices.
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Introduction: about this survey

Let Φ be a stationary point process on Rd. We preliminary say that Φ is hyperuniform if it exhibits anoma-
lously small density fluctuations:

lim
R→∞

Var(|Φ ∩B(0, R)|)
|B(0, R)|

= 0. (0)

where |A| denotes the Lebesgue measure of the measurable set A and B(0, r) is the euclidean ball of radius
r around zero. Definition (0) is in contrast with the Poisson Point Process, where the random variable
Φ ∩ B(0, R) has a Poi(|B(0, R)|) distribution, hence the limit in the LHS is equal to its intensity λ > 0.
Hyperuniform point processes can be locally disordered, but at larger scales they show better organization.

A very short history of hyperuniformity

Processes with reduced density fluctuations have been known for long: see for instance the Martin and Yalcin
paper from 1980 on Coulomb gases, [64], or Lebowitz’ paper [61]. Several papers in the 2000s ([39, 25])
identified hyperuniformity in several physical or statistical models.

However, the seminal paper [79] by Stillinger and Torquato (2003) seems to be the starting point of the
field. Since then, Torquato and his team published quite a number of various paper exploring hyperuniformity
and its properties in many directions; some of them will be quoted in this text, but we refer to the survey
[77] from 2018, gathering the most significant physics papers in the field. Hyperuniform systems are now
popular in the materials science community and also in the physics of particle systems.

Only recently (say, 2016) did the mathematics community become seriously interested in hyperuniformity
per se, when the pioneering papers of Ghosh and Lebowitz ([30, 34]) and their short survey ([33]) opened
the path to further investigations ([1]). A key aspect of their work is the link between hyperuniformity and
rigidity, a much more studied phenomenon. Recently, Chatterjee proved hyperuniformity for hierarchical
Coulomb gas ([16]), and hyperuniformity has been studied in matchings of point processes by Klatt, Last
and Yogeshwaran ([54]).

Contents of this survey

The general, usual preliminaries on Palm measures, correlations, Fourier analysis, etc. are contained in the
Appendices at the end of the survey. Section 1 proves the elementary formulas for the variance of linear
statistics of point processes ; then in Section 2, we discuss the basic definition of hyperuniformity (especially
with regards to window shape dependence). Integrable examples (notably determinantal PP) are shortly
discussed in Section 3. Section 4 studies some consequences of hyperuniformity regarding number fluctuations,
including the CLT. Then, Section 6 explores the links between rigidity phenomena and hyperuniformity. We
prove that hyperuniformity and suitable decay of correlations imply rigidity in d = 1, 2 and we prove the
extreme rigidity properties of stealthy hyperuniform processes (no bounded holes, anticoncentration, maximal
rigidity), following Ghosh-Lebowitz. Section 9 is only on a very interesting kind of processes, perturbed
lattices.
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1. Variance formulas

A configuration ϕ is a discrete subset of Rd. The set of all configurations, Conf(Rd), is endowed with the
σ-algebra generated by counting functions ϕ 7→ #(ϕ ∩X), where X is a Borel subset of Rd and #(·) is the
cardinality. A point process Φ is simply a random variable on this measurable space. From now on, we will
restrict our attention to translation-invariant point processes Φ, those for which Φ and Φ− x have the same
distribution. The letter λ will always denote the intensity parameter: translation invariance ensures that for
any measurable set A,

E[#(Φ ∩A)] = λ|A|

where | · | is the d-dimensional Lebesgue measure.

1.1. Two-point correlations for linear functionals

The most basic object for studying the correlations and variance between two points in a point process Φ is
the two-point correlation measure1 ρ(2), a measure on Rd × Rd defined by∫

Rd×Rd
f(x, y)ρ(2)(dx,dy) := E

 6=∑
x,y∈Φ

f(x, y)

 .
From now on, we will assume that this measure on Rd×Rd is locally finite. For any two measurable functions
f, g, we have

Cov

(∑
x∈Φ

f(x),
∑
x∈Φ

g(x)

)
= λ

∫
f(x)g(x)dx+

∫∫
f(x)g(y)ρ(2)(dx, dy)− λ2

∫∫
f(x)f(y)dxdy (1.1.1)

provided that each of these expressions is meaningfull; if f, g are compatcly supported functions or if they
belong to the Schwartz class, it is the case. In a Poisson point process, it is known that ρ(2) = dy ⊗ dx, so
that in this case the integral above is simply given by

Cov

(∑
x∈Φ

f(x),
∑
x∈Φ

g(x)

)
= λ

∫
f(x)g(x)dx.

For translation-invariant point processes, the two-point correlation ρ(2) essentially depends on the differ-
ence x−y and should thus have the form ‘g(x−y)dydx’. To make this rigorous, we use the Palm distribution
P◦, which is the unique probability distribution on Conf(Rd) defined by the formula

P◦(A) =
1

|B(0, 1)|
E

[∫
B(0,1)

1Φ−xdx

]
(1.1.2)

where A is a measurable subset of Conf(Rd). The mathematical expectation associated with the probability
P◦ will be noted E◦. Under P◦, the point process Φ almost surely has a point located at the origin, ie
P◦(0 ∈ Φ) = 1.

The pair-correlation measure g2 is the positive, locally finite measure on Rd defined by

g2(X) =
1

λ
E◦

 ∑
x∈Φ\{0}

1x∈X

 (X ⊂ Rd). (1.1.3)

Intuitively, g2(dx) is the probability that Φ has a point at location dx, given that there is a point of Φ at
the origin. Thus, the probability that two points of Φ are at locations dx,dy should be g2(dx− dy)dx, ie the

1See Appendix A for basic definitions on Point Processes.
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probability of having a point at dx times the probability of having another point at dx + (dx − dy) given
that there is one at dx. The correlation measure is linked with the Ripley K-function: K(r) = g2(B(0, r)).
For isotropic point processes (rotation-invariant), g2 is itself rotation-invariant: if in addition it has a density
with respect to the Lebesgue measure, it has the form γ(r)rd−1dr for some γ : R+ → R+.

Finally, we define the ‘correlation measure’ C on Rd as

C = δ0 + λ[g2 − 1]. (1.1.4)

Here and in all the survey, 1 both means the constant function equal to 1, ie 1(x) = 1, and thus at the level
of distributions 1 is the Lebesgue measure, because 〈1, f〉 =

∫
1(x)f(x)dx =

∫
f(x)dx. For the Lebesgue

measure of a set I will stick to |X|.
Since this is a difference between possibly infinite measures, this is not well-defined, but since all the

measures at stake are locally finite, it is well-defined on bounded Borel sets. More precisely, we have

C(X) = δ0(X) + λg2(X)− λ|X| (X ⊂ Rd).

This is a measure of the repulsions in the point process. The Dirac mass δ0 accounts for the point in itself
and the −λ times the Lebesgue measure is the mean intensity if the process was totally chaotic (Poisson).
Positivity of g2 − | · | indicates an attractive zone: if g2(dx) > λ, then given the presence of a point at x0,
there is a ‘higher tendency’ to have a point at x0 + dx. Similarly, negative g2(dx) − λ indicates repulsion.
In the physics litterature, the difference g2 − 1 is often called the total correlation function and noted h, so
that C = δ0 + λh.

For a Poisson point process, we saw that g2 is nothing but the Lebesgue measure, hence C = δ0: distinct
points are perfectly uncorrelated, meaning that the location of one point at dx bears no information on the
location of the other points. At the other extreme, we can consider a stationarized grid, for simplicity Φ =
U+Zd where U is uniform over the elementary cell [−1/2, 1/2]d. The intensity is 1 and g2 = λ−1

∑
x∈Zd,x 6=0 δx,

hence in this case
C = −1 +

∑
x∈Zd

δx.

Theorem 1.1 (covariance measure). Let Φ be a stationary point process with intensity λ on Rd. Then, for
any functions f, g,

Cov

(∑
x∈Φ

f(x),
∑
x∈Φ

g(x)

)
= λ

∫
f ~ g(x)C(dx) (1.1.5)

where f ~ g(x) =
∫
f(y)g(x+ y)dy is the tilted convolution.

Proof. We start from (1.1.1). From the definition of the tilted convolution, the first of the three terms is
λ
∫
f(x)g(x)dx = λf ~ g(0), and this is nothing but λ

∫
f ~ g(x)δ0(dx). Now for the second term, we make

use of the Campbell formula (we refer to the appendix for the properties of Palm distributions). This formula
says that for any measurable function F : Rd × Conf(Rd), one has

E

[∑
x∈Φ

f(x,Φ− x)

]
= λ

∫
Rd

E◦[f(x,Φ)]dx. (1.1.6)

We apply this to the function F defined by F (x, ϕ) =
∑
y∈ϕ\{0} f(x)g(x+ y). Clearly,∑

x∈Φ

F (x,Φ− x) =
∑
x∈Φ

∑
y∈Φ−x,y 6=0

f(x)g(x+ y)

=

6=∑
x,y∈Φ

f(x)g(y).
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Consequently, when we integrate, we can use Campbell’s formula and then swap the integral and the expec-
tation (positive Fubini), so that

E

[∑
x∈Φ

F (x,Φ− x)

]
= λ

∫
Rd

E◦

 ∑
y∈Φ\{0}

f(x)g(x+ y)

 dx

= λE◦

 ∑
y∈Φ\{0}

f ~ g(y)


= λ2

∫
f ~ g(y)g2(dy).

This settles the second term in (1.1.1). The last term is easily found to be equal to λ2
∫
f ~ g(x)dx. In the

end, we get

Cov

(∑
x∈Φ

f(x),
∑
x∈Φ

g(x)

)
= λ

∫
f ~ g(x)δ0(dx) + λ2

∫
f ~ g(x)g2(dx)− λ2

∫
f ~ g(x)dx

which is our formula.

See also [15] for a far-reaching treatment on this kind of asymptotics.

Remark 1.2. Formula (1.1.5) entails that
∫
f ~ f(x)C(dx) > 0 for every measurable function f , thus the

tempered measure C belongs to the set of positive-definite measures. This is not obvious, since in general C
is not a positive measure itself.

1.2. Scaled intersection formulae

Apply the identity (1.1.5) to f = g = 1D for some measurable bounded set D (typically, D is the ball of
radius R around the origin): one obtains the formula

Var(|Φ ∩D|) = λ

∫
Rd
α(x,D)C(dx) (1.2.1)

where α is the intersection volume; formally, α(x,D) = 1D ~ 1D(x) = |D ∩ (x + D)| is the volume of the
intersection between D and x + D, a quantity which can efficiently be computed when D is a simple shape
such as an ellipsoid. The seminal paper [79] contains many examples of such computations.

We often like normalizing this expression with the volume of D and developping the measure C; formula
(1.2.1) will often be encountered in the litterature as

Var(|Φ ∩D|)
|D|

= λ

(∫
Rd
α2(x,D)C(dx)

)
(1.2.2)

where α2(x,D) := α(x,D)/|D| denotes the scaled intersection volume. We will often use such formulas when
D = B(0, r) and we will use the letter σ to denote the scaled variance up to a constant, within a ball of
radius r:

σ(r) =
Var(|Φ ∩B(0, r)|)

rd
. (1.2.3)

The asymptotic behaviour of this function (and consequences) is the main concern of this survey.

Example 1.3. In a Poisson point process, this formula says that Var(|Φ∩D|) = λα(0, D) = λ|D|. One can
also see this from the fact that the random variable |Φ ∩D| has Poi(λ|D|) distribution.

Let us now fix some function f .
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1.3. Structure factor and the phase-space variance formula

Shifting from the state space to the Fourier space will prove extremely useful for studying hyperuniformity.
Here, to avoir technicalities, we take the Fourier transform in the sense of tempered distributions. Since
FC = F [δ0 + λg2 − λ1] and since F δ0 = 1, the structure factor can be written nicely in terms of the pair
correlation.

Definition 1.4. The structure measure S of a stationary point process Φ is the Fourier transform of its
correlation measure:

S = 1 + λF [g2 − 1] . (1.3.1)

In the physics litterature, one encounters this object under the name of structure factor or structure
function. Remember that C is itself a signed positive-definite measure (see remark (1.2) Appendix B.4 at
page 61). A consequence of Bochner’s theorem is that S itself is a signed positive-definite measure, and not
an abstract distribution, but mathematically it is not, in general, a function. Another crucial information is
that, even if S is a priori a signed measure, it is indeed a positive measure as shown by the following theorem.

Theorem 1.5 (fundamental formulas). Let f, g be functions. Let Φ be a stationary point process on Rd with
intensity λ and structure factor S. Then,

Cov

(∑
x∈Φ

f(x),
∑
x∈Φ

g(x)

)
=

λ

(2π)d

∫
Rd
f̂(k)ĝ(k)S(dk) (1.3.2)

and

Var

(∑
x∈Φ

f(x)

)
=

λ

(2π)d

∫
Rd
|f̂(k)|2S(dk). (?̂)

Proof. Combine (1.1.5) and the reciprocical Fourier relation (B.4.2).

The functions f, g for which equations (1.3.2)-(?̂) include all the real functions for which the direct-space
formula (1.1.5) holds, and for which the reciprocical Fourier relation (B.4.2) holds. This includes a minima all
compactly supported functions, all Schwartz functions, all non-smooth functions with sufficiently fast decay.

For a Poisson point process, C = δ0, hence S = 1. In general, since S = 1 + λF [g2 − 1], the behaviour
of S depends on how g2 fluctuates around 1. It can be proved (see [?]) that g2(B(0, r)) ∼ |B(0, r)| when
r → ∞. If g2 is has a smooth density with respect to the Lebesgue measure, then one can expect that
F [g2 − 1](k) vanishes at large wavevectors |k| → ∞, so that the large-wavelength behavior of the structure
factor is essentially lim|k|→∞ S(k) = 1.

Remark 1.6 (the structure kernel). Any measurable function f such that |f̂ |2 ∈ ker(S) has zero variance,
hence is deterministic: P-almost surely one has∑

x∈Φ

f(x) = λ

∫
Rd
f(x)dx.

This fundamental property will be exploited many times ahead, and explains why the structure of the kernel
of S is of paramount importance in the study of rigidities of point processes.

1.4. Number variance for simple shapes: Bessel and Sine kernels

In view of using the phase-space formula (?̂) applied to f = 1D with D some window, it will prove useful to
gather here a few Fourier transforms of classical shapes such as balls and boxes.
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Balls and Bessel

Let B = B(0, r) be the euclidean ball of radius r. In order to express the number variance as in (0) we recall
the Fourier transform of 1B :

1̂B(0,r)(ξ) = rd/2
Jd/2(r|ξ|)
|ξ|d/2

. (1.4.1)

We also recall that the volume of B(0, r) in a d-dimensional real space is rd times the volume of the unit
ball B(0, 1), given by

κd :=
πd/2

Γ
(
d
2 + 1

) . (1.4.2)

If Φ is a stationary point process with intensity λ, formula (?̂) and formula (1.4.1) shows the following
fundamental representation (see for instance eq.(58) in [77]):

Var(Φ(B(0, r)))

|B(0, r)|
=

λ

κd(2π)d

∫
Rd

Jd/2(|rξ|)2

|ξ|d
S(dξ). (1.4.3)

Equivalently, we introduce j(x) = (κd(2π)d)−1Jd/2(|x|)2/|x|d. This is a smooth function except at zero, and
it is nonnegative and radial. They are plotted for small values of the dimension d in Figure 1.

Figure 1: Plots of the (radial part of) the Bessel kernel j : t 7→ (κd(2π)d)−1Jd/2(t)2/td for several values of
the dimension d. Classical Bessel asymptotics confirm that j(t)→ 0 as d→∞.

Parseval’s identity ensures that
∫
j(x)dx = 1. The family of functions jε(x) := ε−dj(x/ε) thus forms

an approximation of unity2, which I will call the Bessel approximations, and we have

Var(|Φ ∩B(0, r)|)
|B(0, r)|

= λ

∫
Rd

j1/r(ξ)S(dξ) (1.4.4)

which goes to ‘the value of S at zero’ under some assumptions on S which will be described later.

Boxes and Sines

Let C = B∞(0, r) = [−r, r]d be the `∞-ball of radius r. We recall the Fourier transform of 1C :

̂1B∞(0,r)(ξ) = 2d
d∏
i=1

sin(rξi)

ξi
. (1.4.5)

2But its support is not bounded.
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If Φ is a stationary point process with intensity λ, formula (?̂) and formula (1.4.5) show the following
fundamental representation:

Var(Φ(B∞(0, r)))

|B∞(0, r)|
=

λ

(2π)d

∫
Rd

d∏
i=1

sin(rξi)
2

rξ2
i

S(dξ) (1.4.6)

where we used |B∞(0, r)| = (2r)d.
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2. Hyperuniformity: definitions and characterizations

The initial, intuitive and natural definition for hyperuniformity happens to be (0):

lim
r→∞

Var(#(Φ ∩B(0, r))

|B(0, r)|
= 0.

However, there is a choice hidden in this definition: why choosing euclidean balls? Is the definition equivalent
if we choose, say, balls in the `p topology, or windows with different shapes such as ovals or rectangles or
other shapes, as in Figure 2?

Figure 2: Does Definition (0) depend on the shape of the window in which we count the points?

This section clarifies the definition, introduces the phase-space characterization of hyperuniformity and
the basic definitions linked with it: order metrics, hyperuniforms systems classification, quadratic variance
formula.

2.1. On window shape dependence

The influence of window shape on number fluctuation is better seen with grids. Let Φ = U + Z2 be the
2-dimensional stationarized grid. The number of points in the euclidean ball B(0, r) will be noted N(r), and
the number of points in the `∞-ball [−r, r]d will be noted C(r). We will prove that the limit in (0) is zero
for N(r), but not for C(r).

Let us start with N(r). In general, the task of counting integer points in euclidean balls is a difficult
and old problem, called the Gauss circle problem. Indeed, a simple counting argument dating back to Gauss
himself asserts that (almost surely),

|N(r)− πr2| 6 2 + 2
√

2r = O(r). (2.1.1)

Proof. Consider the the union of every unit square, whose center is a point in Φ ∩ B(0, r). This set, say
Vr, has volume exactly equal to N(r) × 1 = N(r). However, it is easily seen that Vr contains the ball
B(0, r −

√
2), and is itself contained in the ball B(0, r +

√
2), so a volume comparison immediately shows

that π(r −
√

2)2 6 N(r) 6 π(r +
√

2)2. Developping the squares yields the result.

However, such a bound is very crude and only yields Var(N(r)) = O(πr2). Fortunately, the bound
(2.1.1) has been considerably sharpened. Finding an optimal bound is still unsolved and it is conjectured
that the optimal error is O(r1/2+δ) for any δ > 0; at the moment, there are many results showing that
|N(r)− πr2| = o(r), which ensures that

lim
r→∞

Var(N(r))

|B(0, r)|
= 0.

This matches definition (0).
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Let us now consider the square, C(r) = #(Z2 ∩ [−r, r]2). Since Φ is stationary, C(r) has the same
distribution as D(r) = #(Z2 ∩ [0, 2r]2) which makes computations slightly easier, since if we note U = (u, v)
then

D(r) = d2r − ued2r − ve.

This is equal to d2re2 if both u and v are smaller than p = {2r} (the fractional part), which happens with
probability p2. Similarly, it is equal to d2reb2rc with probability pq where q = 1− p, and it is equal to b2rc2
with probability q2. The variance is thus given by

Var(C(r)) = Var(D(r)) = (p2d2re4 + 2pqd2re2b2rc2 + q2b2rc4)− 16r4

= (pd2re2 + qb2rc2)2 − 16r4

= (p(2r + q)2 + q(2r − p)2)2 − 16r4

= (4r2 + pq)2 − 16r4

= 4r2

(
2pq +

p2q2

4r2

)
.

We thus get the formula

Var(#(Φ ∩ [−r, r]2))

|[−r, r]2|
= (1 + o(1))2{2r}(1− {2r}). (2.1.2)

The limit is oscilatory when r → ∞, taking values from 0 to 1/2. For instance, taking r = n + 1/4 yields a
limit equal to 1/2 above, which is notoriously nonzero; but this might seem counter-intuitive, since the square
of side length 2n+ 1/2 is itself a totally honest convex window with self-similar growth, but the fluctuations
of number density in this window is the same order as Poisson.

Actually, this example can be pushed slightly further: we can tilt the squared window by some angle θ.
When tan(θ) is a rational number, a resonnance between the Fourier transform of the indicator of the tilted
square and the Fourier transform of the lattice happens, as beautifully described in [46], causing nontrivial
fluctuations.

The dependence on (0) with respect to window shape hopefully vanishes under some general hypotheses
discussed in the following section.

2.2. Integrability of the covariance measure

If a point process satisfies (0), then by taking Dn = B(0, n) in the scaled-intersection formula (1.2.2), one
has

0 = lim
n→∞

λ

∫
α2(x,Dn)C(dv).

The smooth functions x 7→ α2(x,Dn) converge pointwise towards the constant function 1, and we would
merrily pass the limit inside the former integral and conclude that∫

Rd
1C(dv) = C(Rd) = 0. (2.2.1)

Equivalently, if the pair-correlation measure has a density g2(dx) = g2(x)dx, the former identity could be
written

0 = 1 +

∫
Rd

[g2(x)− 1]dx.

Such identities are essentially true and they are often seen in papers, but they carry difficulties within. When
C is a difference between two measures, one cannot pass the limit inside the integral and this is not just a
technical detail: the preceding section shows that one can find totally honest windows shapes Dn for which
the limit is equal to 0, and some others for which the limit is nonzero. If one wants to rigorously use (2.2.1),
one has two choices:
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1. either choose a specific limiting sequence Dn growing to Rd,

2. or make some hypothesis on C which will legally allow to write (2.2.1).

I will choose the second road, but most of the incoming results might also be proved in a more general
way using the first one. A simple and versatile hypothesis is the following. By signed measure, I mean: a
difference between two measures, µ = µ+ − µ−, such that one of them is finie. This is to avoid ∞−∞ when
evaluating, for instance, µ(Rd).

Hypothesis 2.1. The covariance measure C is a signed measure, or equivalently the total correlation h =
g2 − 1 is a signed measure.

By Hahn’s theorem, this means that there are two measures C+,C−, the second one finite, such that
C = C+ − C−. This happens for instance when C has a bounded density c with respect to the Lebesgue
measure, and c only takes negative values in a compact set. This will in general be the case for some
determinantal point processes. The most blatant limitation of this hypothesis (but also, the only one I know)
is that the class of lattices and perturbed lattices does not satisfy (2.1) — but they will have their own section
in thus survey.

When C satisfies Hypothesis (2.1), one can pass to the limit inside both C+ and C−, and in this case, for
any growing window shape Dn,

lim
n→∞

Var(|Φ ∩Dn|)
|Dn|

= lim
n→∞

∫
α2(x,Dn)C+(dv)−

∫
α2(x,Dn)C−(dv)

= C+(Rd)− C−(Rd) ∈ (−∞,+∞].

Then, (0) implies that C(Rd) = 0 whatever the shapes for Dn, provided they are nested and grow to Rd.
Note that when Hypothesis (2.1) is fulfiled, then the Fourier transform of C is actually absolutely contin-

uous with some continuous density that will be noted s, and furthermore one has

| s(ξ)| =
∣∣∣∣∫ e−i〈x,ξ〉C(dx)

∣∣∣∣ 6 |C|(Rd) <∞. (2.2.2)

Consequently, under (2.1), the structure measure assumes a particularly pleasant form: it is a bounded
continuous function. We gather all the results in this section in the following.

Proposition 2.2. Let Φ be a stationary point process on Rd, satisfying Hypothesis (2.1). Then, the following
are equivalent:

1. S(0) = 0.

2. C(Rd) = 0.

3. Φ satisfies (0).

4. Φ satisfies (0) for any sequence of nested, connected, convex open sets Dn such that Dn ↗ Rd.

2.3. General hyperuniformity

For any integrable function f , we define the normalized linear statistics variance of Φ at f by

σ(f) :=
Var

(∑
x∈Φ f(x)

)∫
Rd f(x)dx

. (2.3.1)

Definition 2.3 (hyperuniform statistics). Let f be a measurable function. A stationary point process Φ is
said to be hyperuniform with respect to f if there is a sequence of Schwartz functions fn ∈ S (Rd) such that

1. fn → f pointwise,
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2. σ(fn)→ 0.

We will often say that f is a hyperuniform statistic for Φ, and the set of hyperuniform statistics is going
to be noted Hyp(Φ). The sequence (fn) will be called an approximation sequence. Usually, we want the
constant function 1 to be a hyperuniform statistic for Φ, which corresponds to the classical notion of number-
hyperuniformity. Of course, my definition does not encompass the preliminary definition (0), but one can
easily prove that (0) implies (1)-(2) above, by taking fn to be smooth functions taking the value 1 on B(0, n)
and zero outside B(0, n+ 0.1).

Example 2.4. An important example is when f(x) = |x|k for some k > 0. I will refer to this as k-
hyperuniformity.

2.4. Stealthy hyperuniform processes

For most point processes, we just saw that hyperuniformity is equivalent to “S(k → 0) = 0”. We could go
further, and ask for S to be zero in a neighborhood of zero.

Definition 2.5. A stationary point process Φ is called stealthy hyperuniform (SH for short) if there is an
open set U containing the origin, such that for any f which is supported inside U , then 〈S, f〉 = 0.

The typical example is the stationary grid U +Zd, or more generally any stationarize lattice U +L where
U is uniform on the fundamental cell of L (see Subsection 3.1). The spectral gap of a SH process is the largest
r such that S vanishes on B(0, r). For instance the spectral gap of stationarized grids is 1. Such processes
were notably studied, from a physicist point of view, in [84] and [80], and more recently in [34]. In Subsection
7 we prove that they have some extreme rigidity properties.

Remark 2.6 (on the lack of examples). I do not know any examples of stealthy hyperuniform processes besides
grids and refinements of grids. In particular, I do not know any ‘amorphous’ process (locally disordered)
which is stealthy. It is also interesting to see that constructing random measures which are stealthy is quite
trivial: for instance, the Bochner-Khinchine theorem says that every positive measure m corresponds to a
Gaussian field with structure factor m, so stealthy gaussian random fields can very easily be constructed.
But to my knowledge, there is no condition for a measure to be the structure factor of a point process: for
that matter, this question is asked in Gabrielli [26] and reiterated in [79]. However, it is believed that in two
dimensions, there are some 3-valued processes (ie random measures Φ with values in {0, 1, 2} instead of {0, 1}
as for classical point processes) which are stealthy hyperuniform (Subhro Ghosh, private communication).

Remark 2.7. Nontrivially perturbed lattices cannot be hyperuniform: cf Corollary 9.4.

2.5. Stability of hyperuniformity

Let Φ be a hyperuniform point process. What are the operations on Φ that preserve hyperuniformity and
those who do not? I gather here a few examples of both. Obviously, any deterministic linear transformation
preserves hyperuniformity.

Example 2.8 (random rescaling preserves HU). We continue Example ??. In many examples, the function
σ is bounded; this is for instance the case when Φ is a stationarized grid (one will easily check that σ(r)→ 1
when r → 0+). Consequently, if Φ is hyperuniform and σ is bounded, then the dominated convergence
theorem shows that the LHS of (??) goes to zero as r →∞ and the rescaled process Ψ is also hyperuniform.

Example 2.9 (rotations preserve HU). This is obvious, since if U is unitary then |UΦ∩B(0, r)| = |Φ∩B(0, r)|.
However, this statement is heavily window-shape dependent.

Example 2.10 (iid perturbations preserve HU). Consider a stationary point process Φ, then displace each
point by a random perturbation. Formally, Ψ = {x + Vx : x ∈ Φ} were (Vx) is an iid collection of random
variables with common distribution V . Then, Ψ is hyperuniform if and only if Φ is hyperuniform. This is
proved in Section 9, where we will examine more thoroughly this model.
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Example 2.11 (Poisson thinning is not HU). Let Φ be a HU process. We thin it independentaly: to do
this we simply have a collection (ξx)x∈Φ of iid random Bernoulli variables Ber(p) with p ∈]0, 1[, and we set
Φ1 = {x ∈ Φ, ξx = 1}. We fix r > 0 and we note N = |Φ ∩ B(0, r)| and N̄ = |Φ1 ∩ B(0, r)|. We recall that
the variance of a Bin(n, p) random variable is np(1− p). Consequently,

E[|N̄r −E[N̄r]|2] = E
[
|N̄r −E[N̄r]|2

∣∣Nr] = E [Var(Bin(Nr, p))|Nr]
= E[Nrp(1− p)]
= λ|B(0, r)|p(1− p)

which proves that Φ1 is not hyperuniform.

Remark 2.12 (Hyperuniform thinnings). A thinning of Φ is a random subset of Φ1 ⊂ Φ and we note Φ2 =
Φ \ Φ1. If the process Φ is not hyperuniform, then Φ1 and Φ2 cannot be both hyperuniform. To see this
we do the following simple observation (private communication from Yogeshwaran Dhandapani): if we note
σ(r) = Var(|Φ∩B(0, r)|)/rd and σk(r) = Var(|Φk∩B(0, r)|)/rd where k ∈ {1, 2}, then by the Cauchy-Schwarz
inequality

|σ(r)− σ1(r)− σ2(r)| = |Cov(|Φ1 ∩B(0, r)|, |Φ2 ∩B(0, r)|)|
rd

6
√
σ1(r)σ2(r). (2.5.1)

We suppose that σ is bounded at infinity3. Then, if Φ1 is hyperuniform, we have |σ(r) − σ2(r)| → 0.
Consequently, if Φ is hyperuniform, then Φ2 is hyperuniform, but if Φ is not then Φ2 is not. One cannot
write a non-hyperuniform process as the union of two hyperuniform processes.

2.6. On repulsions in hyperuniform point processes

Based on a private communication of Günter Last.

In the paper [38], Goldman showed that for a class of determinantal point processes (later widened in
[5, 65]), the Palm version of a point process can be coupled with the process itself. Let us suppose that
Φ◦ is a point process, such that its distribution under P is P◦. A point process is said to belong to the
Palm-coupled class (PC) if there is another point process, say Ξ, such that

(i) Φ ∩ Ξ = ∅ almost surely, that is : Φ and Ξ are mutually singular.

(ii) Φ = (Φ◦ \ {0}) ∪ Ξ.

In other words, the point process Φ can be obtained by simply sampling the Palm distribution, and then
adding the points of Ξ. Equivalently, to get the Palm version from the regular version, one can simply delete
the points of Ξ. This is why the points in Ξ are a measure of the repulsiveness of points : they account for
the points who have to be removed from the process when we condition on the appearance of a point at the
origin. We recall that C = δ0 + λ[g2 − 1].

Theorem 2.13. Let Φ be a point process belonging to the Palm-coupled class. Then,

Var(|Φ ∩D|)
|D|

= λ

(
1− E[#(Ξ ∩D)]

λ

)
. (2.6.1)

Consequently, it is hyperuniform if and only if limD↗Rn E[#(Ξ ∩D)] = λ.

Proof. From the definition of g2 and the Palm-coupling above, we have

g2(D) =
1

λ
E

[∑
x∈Φ

1x∈D −
∑
x∈Ξ

1x∈D

]
= |D| − 1

λ
E[#(Ξ ∩D)]. (2.6.2)

3Can it be unbounded?
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Consequently,

Var(|Φ ∩D|)
|D|

= λ

∫
α(x,D)C(dx)

= λ+ λ[|D| − λ−1E[#(Ξ ∩D)]− |D|]
= λ−E[#(Ξ ∩D)]

and the theorem is proved.

A simple consequence of this theorem is that the mean number of ‘removed points’, namely E[Ξ∩Rd], is
smaller than the intensity of the point process Φ; consequently, in the PC-class, hyperuniform point processes
are precisely those point processes where the mean number of points of Ξ is maximized.
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3. Some important examples

In this section, I’ll gather a few examples which more or less fall inside the realm of ‘integrable systems’.
There is a section on determinantal point processes. I will add sections on permanental point processes and
pfaffian point processes. The sine-beta process clearly deserves its own subsection and we will go back at it
in the rigidity section, later.

3.1. Lattices

We already took a glance at density fluctuations of grids U + Zd, but the same arguments apply to lattices.
By lattice, I will always mean what physicists usually call Bravais lattice, ie linear deformations of Zd: they
are the point processes defined by G∗(τZd), where G ∈ SL(Rd) is nonsingular and4 has determinant 1.

If L is any lattice, then its dual lattice (or reciprocical lattice) is classically defined by

L∗ = {y ∈ Rd : ∀x ∈ L, 〈x, y〉 ∈ L}. (3.1.1)

but it also has the explicit expression L∗ = G−1Zd. The computation of structure factor over lattices is
well-known: for a summary of harmonic analysis on lattices, see Appendix B.5 at page 61. From now on, for
any lattice L, I will note ∆ = ∆L its measure, ie ∆L =

∑
x∈L δx. Theorem B.4 therein says that the Fourier

transform of a lattice is nothing but its dual lattice:

F∆L = ∆L∗ . (3.1.2)

This is more or less an avatar of Poisson’s summation formula.
Since, for a stationarized lattice Φ = U + L, the pair correlation function is always the lattice with the

origin removed g2 = ∆L\{0} = ∆L − δ0, we immediately see that the structure factor of Φ is given by

S = ∆L∗ − δ0 (3.1.3)

that is, the measure of the dual lattice with the origin removed.

3.2. Determinantal point processes

A determinantal point process (DPP) is a point process whose k-th correlation measure is absolutely contin-
uous with respect to the Lebesgue measure5, and has density

%(k)(x1, . . . , xk) = det[(K(xi, xj))i,j∈[k]] (3.2.1)

where K : Rd × Rd → R is a symmetric function called kernel. Such processes were introduced in physics
(as Fermion models) by Odile Macchi in the 70s ([63]), and have since then attracted considerable attention.
For surveys and overviews on DPPs, we refer to [71, 6] for physical and statistical point of views, and to
[41, 62, 76] for complete mathematical investigations.

Proposition 3.1. A DPP with kernel K is stationary if and only if

det[(K(z + xi, z + xj))i,j∈[k]] = det[(K(xi, xj))i,j∈[k]] (3.2.2)

for every integer k and every z, x1, . . . , xk ∈ Rd.

4I restrict to SL(Rd) for keeping the same intensity.
5There are more general settings, but this one will be sufficient here.
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This implies that λ = K(x, x) for any x and that there is a function k such that K(x, y) = k(x − y).
We will from now on suppose that k is an L2 function. A basic consequence of the definition of correlation
(A.4.1) in this setting is that the two-point correlation measure µ(2) is a function: for any f, g ∈ S (Rd), one
has

E

∑
x 6=y

f(x)g(y)

 =

∫∫
Rd×Rd

f(x)g(y)%(2)(x, y)dxdy

where %(2) is the two-point correlation function:

%(2)(x, y) =

∣∣∣∣K(x, x) K(x, y)
K(y, x) K(y, y)

∣∣∣∣ = λ2 − k(x− y)2. (3.2.3)

This readily implies that g2 = 1− λ−2k(x)2dx and the covariance measure is given by C = δ0 − λ−1k(x)2dx.
The structure function is then given by 1 − λ−1F (k2). Upon noting h(u) = k(u)2 we thus see that S is
absolutely continuous with respect to the Lebesgue measure, and its density s is

s(ξ) = 1− ĥ(ξ)

λ
. (3.2.4)

The value of the density function s at zero is exactly s(0) = 1− ĥ(0)/λ = 1− λ−1
∫
k(u)2du. The following

proposition immediately follows.

Proposition 3.2. A stationary determinantal point process with kernel K(x, y) = k(x−y) where k ∈ L2(dx)
is hyperuniform if and only if

K(0, 0) =

∫
Rd

K(x, 0)2dx. (3.2.5)

Example 3.3 (Ginibre). The Ginibre point process is the two-dimensional determinantal process whose

correlation kernel is K(x, y) = π−1exy
∗−|x|2/2−|y|2/2 (where x, y ∈ C). It is obviously stationary. Some

Fourier transform computations show that in this case the Fourier transform has density

s(ξ) = 1− e−
|ξ|2

4 .

The Ginibre process is thus a class-I hyperuniform system. In dimension 2, it exactly gives the thermodynamic
limit of the one-component plasma ([42]) at a specific temperature 1/β0.

Example 3.4 (Sine process). The Sine Process is a DPP on the real line whose kernel is the sinc function,
ie K(x, y) = s(x− y) where

s(x) =
sin(πx)

πx
. (3.2.6)

We have s(0) = 1. It is well known that s is the Fourier transform of the indicator function of [−0.5, 0.5],
hence its L2 norm is equal to 1 and this DPP is hyperuniform.

3.3. Pfaffian point processes

Pfaffian point processes generalize determinantal point processes. They arise when diagonalizing gaussian
matrix models with real orthogonal matrices (β = 1) or symplectic matrices (β = 4). Chapter 6 in Peter
Forrester’s book Log gases and random matrices ([23]) contains a host of results on Pfaffian processes.

We recall the the Pfaffian of an anti-symmetric 2n× 2n matrix A = (ai,j) is defined by

Pfa(A) =
1

2nn!

∑
σ∈S2n

sign(σ)

n∏
i=1

aσ(2i−1),σ(2i).

It is thus a polynomial in the entries of the matrix and it satisfies Pfa(A)2 = det(A). See [2, Section 5.3] for
elementary results.
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A point process is called Pfaffian if its k-correlation measures exist, are absolutely continuous with respect
to the Lebesgue measure, and if the densities ρ(k) are given by

ρ(k)(x1, . . . , xk) = Pfa

K(x1, x1)J · · · K(x1, xk)J
...

...
K(xn, x1)J · · · K(xk, xk)J

 (3.3.1)

where K is a 2× 2 kernel, ie K : Rd × Rd → C2×2, and must satisfy the identity

[K(x, y)J]t = −K(y, x)J with J =

(
0 −1
1 0

)
. (3.3.2)

If we write K(x, y) = (Ki,j(x, y)i,j=1,2, these constraints can also be written

K1,2(x, y) = −K1,2(y, x) K2,2(x, y) = K1,1(y, x) K2,1(x, y) = −K2,1(y, x).

The intensity function of a Pfaffian point process is thus simply %(1)(x) = −K1,1(x, x). Just as in
Proposition 3.2 for DPPs, a Pfaffian point process is stationary if and only if the RHS of (3.3.1) is invariant
when (x1, . . . , xk) is translated by (z, . . . , z). This implies that K(x, y) = k(x− y) for some k : Rd → C2×2,
and that k1,1 is a constant function equal to the intensity λ, and so is k2,2. The two-point correlation of a
stationary Pfaffian point process with kernel K is given by

%(2)(x, y) = Pfa


0 −K1,1(x, x) K1,2(x, y) −K1,1(x, y)
∗ 0 K2,2(x, y) −K2,1(x, y)
∗ ∗ 0 −K1,1(y, y)
∗ ∗ ∗ 0


= K1,1(x, x)K1,1(y, y) + K1,2(x, y)K2,1(x, y)−K1,1(x, y)K2,2(x, y)

= k1,1(0)2 + k1,2(x− y)k2,1(x− y)− k1,1(x− y)k2,2(x− y)

= k1,2(x− y)k2,1(x− y).

From this, we deduce that the reduced Palm intensity is given by

g2(dx) =
h(x)

λ2
dx (3.3.3)

where h(x) = k1,2(x)k2,1(x). The correlation measure is in this case equal to

C(dx) = δ0 + λh(x)dx− λ1 = δ0 −
det(k(x))

λ
dx.

The structure factor is then given by

S = λ−1FC = 1− F (detk)

λ

Proposition 3.5. A stationary Pfaffian point process is hyperuniform if and only if∫
Rd

detk(x)dx = k1,1(0). (3.3.4)

Proposition 1.4 in [14] links the hyperuniformity type of the process with its rigidity properties; it is
nothing more than Theorem 6.6 thereafter, in a particular case.

Example 3.6 (Pfaffian sine process). The Sine1 process is the Pfaffian analog of the Sine process in Example
3.4. It is the Pfaffian process whose kernel is given by

KSine1(x, y) =

(
s(x− y)

∫ x−y
0

s(t)dt− sign(x−y)
2

s
′(x− y) s(x− y)

)
where s(u) = sin(πu)/πu is the sincardinal function. It arises as the bulk scaling limit of the GOE, see [23,
Chapter 7]. The Sine1 process is hyperuniform: we can infer this from Proposition 3.5 and the computation
of
∫

detk, but it will also be a consequence of Theorem 6.6.
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3.4. The sine-beta process

The Sineβ process is a stationary point process on R defined in [81] and in [45] and meant to generalize
Examples 3.4-3.6, the β = 2 GUE sine process and the β = 1 GOE sine process; I will not give the ‘intrinsic’
definition, but only the limiting definition obtained in [81, 45]. The main existence theorem is as follows: we
introduce a probability distribution on {x1 < x2 < · · · < xn} by its density

Pn,β(dλ1, . . . ,dλn) =
1

Zn,β
exp

−β
n∑
i=1

λ2
i

4
+ β

∑
j<k

log |λj − λk|

 (3.4.1)

where Zn,β is the partition function. It is known that this is the probability distribution of the ordered
eigenvalues of a special kind of random matrix Hn,β whose distribution is often called β-ensemble, a famous
result by Dumitriu and Edelman ([20]). When β = 1, 2, 4, it is also the distribution of eigenvalues of
GOE/GUE/GSE ensembles. Seen as point processes on R, they converge, and this can be seen as a definition
of Sineβ . More precisely, for every β > 0 and every fixed real number x, the random point process defined by

Ψx
n =

n∑
i=1

δn(λi−x),

weakly converges as n→∞ to a stationary point process on R only depending on β and called Sineβ :

Ψx
n  Sineβ (3.4.2)

here convergence happens with respect to the vague topology for counting measures. There is an explicit
representation of Sineβ using the Brownian Carousel in [81], but it is quite difficult to handle; more recently,
the authors also found an infinite-dimensional Hermitian operator whose eigenvalues form a Sineβ process.

However, it is a result in [81] that Sineβ is indeed hyperuniform, and more precisely one has

Var(|Sineβ ∩ [0, r]|)
r

6
c log(r)

r
(3.4.3)

for some constant c = cβ .

Remark 3.7. The existence of a β-analog of the Ginibre process (which would called Ginibreβ) is not known
and the existence of higher-dimensional analogs seems far out of reach as now. Thomas Leblé knows more
about this than me.

3.5. Zeroes of the Gaussian Entire Function

In this section, we develop the two-dimensional example of the zero set of the Gaussian entire function.
Let (Xn) be a family of independent standard complex Gaussian random variables6. The classical Gaussian
Entire Function (GEF) is the random analytic function defined by

F (z) =

∞∑
n=0

Xn
zn√
n!
. (3.5.1)

This object has been thoroughly studied since the last 30 years, see [41] for a textbook treatment. It is
a classical exercise to show that (3.5.1) is an entire function, or equivalently that its radius of convergence is
infinite. It is also a Gaussian field, in that for every z1, . . . , zm, the random complex numbers F (z1), . . . , F (zm)
are jointly Gaussian. The covariance kernel7 is K(z, w) := E[F (z)f(w)] = ezw; while f is not itself shift-
invariant, an easy computation shows that for any a,

E[F (z + a)F (w + a)] = E[Fa(z)Fa(w)]

6The density is π−1e−|z|
2
dz on C.

7Even it is the same kernel as for the Ginibre process, it should be noted that the zero set of the GEF is not a determinantal
process with kernel K.
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where fa(z) := F (z)ezw+|w|2/2, showing that Fa and F have the same distribution. Consequently, the random
set of zeroes of f ,

Φ := {z ∈ C : F (z) = 0} = F−1({0}), (3.5.2)

is itself translation-invariant. The picture below shows a domain colouring of F ; the small dots are the zeroes.

The following properties are proved in [41].

Proposition 3.8. Φ is almost surely an invariant, isotropic, ergodic, simple point process (ie, f has as no
multiple zeros) with intensity λ = 1/π.

The computation of the variance is thus of special interest for us. This seemed to appear first in [24,
eqn.(4.16)], and then a long series of works expanded this computation with different methods or types of
random Gaussian functions, or for the variance of linear statistics in general. We refer to [75, 68, 67, 50] and
references therein.

Theorem 3.9. The zero set of the GEF is hyperuniform. More precisely,

Var(#(Φ ∩Br))
|Br|

=
ζ(3/2) + o(1)

4π3/2

1

r
≈ 0.05864

r
. (3.5.3)

The original paper [23] has a physics flavour; a complete proof of (3.5.3) is in [41], but for the variance of
linear smooth statistics of Φ.

Remark 3.10. It is possible to compute the variance of linear statistics of zeros of more general Gaussian func-
tions than (3.5.1), see [49], but these zero zets are not translation-invariant. In fact, (3.5.1) is the only Gaus-
sian function whose zeros are translation-invariant and with intensity 1/π, see [74]. The reason is that if Φ is
the zero set of F , then the Edelman-Kostlan formula says that E[

∑
x∈Φ f(x)] = (2π)−1

∫
∆ logK(z, z)f(z)dz

where ∆ is the distributional Laplacian and f is any smooth test function. It implies that the intensity
measure of the zero set of a Gaussian analytic function determines K(z, z), which by analyticity determines
K(z, w). This is called Calabi’s rigidity and it has nothing to do with the rigidity of Section 6.

3.6. A challenge: the generation of hyperuniform, amorphous patterns

An important question in the materials science community is the efficient generation of large samples of
hyperuniform point processes; by large, I mean with a few million (n = 106) points. It seems that now (July
7, 2021), the only way to do this is to start with fixed hyperuniform structures such as Zd, and to gently
‘shuffle’ the lattice by displacing every point randomly. This model, the Independently Perturbed Lattice, is
of paramount importance and will occupy us through all Section 9.

However, these ‘shuffled lattices’ exhibit a very strong underlying structure, emerging from the original
lattice Zd or whatever lattice is used. Point processes with no such structure (‘Bragg peaks’) are often called
amorphous. Hyperuniform DPPs, sine-β processes, Coulomb gases are amorphous, but it is quite difficult to
efficiently generate very large samples of them.
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At this moment, generating large samples of amorphous HU processes cannot easily be done. The question
is explored in [47, 48, 51]. One strategy is to use the preceding ‘shuffled lattice’ model, and to artificially
hide the underlying lattice [51], see Subsection 10.3. Another one is to use tesselation-based displacements,
a procedure explored in [47, 48] and [53], but which seems at the moment out of reach from mathematical
analysis.
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4. Density fluctuations

Let Φ be a hyperuniform point process. If the variance of the points in large balls is negligible compared to
the volume, how exactly does it scale? Does the variance behave like the surface area of the window, ie

Var(|Φ ∩Dn|) � Area(∂Dn)?

A good description of the variance scaling is available in the physics litterature, and was globally rigorous
described in [77] (Section 5.3). Recently, [1] explored these asymptotics for stationary random fields on Zd,
and proved a CLT for hyperuniform systems as well as an insightful ‘entropy degeneracy’ result. We formulate
these results in the setting of random point processes on Rd.

4.1. Hyperuniform systems classification

Let us place ourselves under Hypothesis (2.1), so that the structure function S is actually an absolutely
continuous measure with bounded density s with s(0) = 0. Thanks to the Fourier representation of the
variance derived in (1.4.4),

σ(r) :=
Var(|Φ ∩B(0, r)|)

|B(0, r)|
= λ

∫
Rd

j1/r(ξ) s(ξ)dξ,

we can efficiently study the behaviour of σ(r) as dictated by the behaviour of s(ξ) around zero using to
classical asymptotics of Bessel functions as given by Lemma B.1 in the appendix.

Proposition 4.1. Let Φ be a hyperuniform stationary point process on Rd satisfying (2.1). We suppose that
there is a constant c such that | s(ξ)| ∼ c|ξ|α for ξ in a neighborhood of zero. Then, the following happens
according to the value of α:

1. If α ∈ (0, 1), then σ(r) = O(1/rα).

2. If α = 1, then σ(r) = O(log(r)/r).

3. If α > 1, then σ(r) = O(1/r).

Proof. We suppose wlog that λ = 1. Thanks to (1.4.4), we have

σ(r) :=
Var(|Φ ∩B(0, r)|)

|B(0, r)|
=

∫
Rd

j1/r(ξ) s(ξ)dξ

=

∫
Rd

s(x/r)j(x)dx

=

∫
|x|<r

s(x/r)j(x)dx+

∫
|x|>r

s(x/r)j(x)dx =: a(r) + b(r).

We supposed s to be bounded, and we can wlog suppose it is always smaller than 1, so that b(r) 6∫
|y|>r j(x)dx. This integral is itself O(1/r) thanks to Lemma B.1 in the Appendix. Moreover, a(r) 6

cr−α
∫
|x|<r |x|

αj(x)dx, and this integral is also easy to study thanks to Lemma B.1. When α = 1, it is

equivalent to some constant times log(r), hence the case II. When α < 1 it is bounded, and when α > 1 it is
O(r−α × rα−1) = O(1/r).

Hyperuniform processes are frequently classified as types I, II and III, according if σ(r) grows as 1/r, as
log(r)/r or as r−α for some α < 1: see the paragraph 5.3.2 in Torquato’s survey [77]. We refer to the list in
[77], Table 1, for many examples.

23



4.2. The minimal decay

One might wonder if σ(r) might decay faster than 1/r. It would mean that the variance of |Φ ∩ B(0, r)|
grows smaller than the surface of B(0, r) which is crd−1. But this is actually not possible. For example, if C
satisfies Hypothesis (2.1) and is absolutely continuous, the Riemann-Lebesgue lemma says that s(x)→ 1 as
x→∞, hence in the proof above one has σ(r) &

∫
|x|>r j(x)dx � 1/r.

The same argument is also true under less restrictive assumptions, at the cost of more technicalities; in
fact, the general argument was proved in a non-random setting by Jószef Beck in his celebrated 1987 paper
[8]. There, a general version of the following result is proved.

Theorem 4.2 (Beck’s theorem ([8], Thm. 2A)). Let X = (xn)n∈N be an arbitrary sequence of points in Rd.
Then, for every radius r > 1, there is a constant c = c(d) and a ball Bs = B(v, s) with radius s < r such that

|#(X ∩Bs)− |Bs|| > crd−1. (4.2.1)

4.3. The central-limit theorem

Hyperuniform processes satisfy a central-limit theorem. This is a remarkable phenomenon, conjectured in
many physics papers but to my knowledge, properly proved very recently by Adhikari, Ghosh and Lebowitz
in their paper [1] for random fields on Zd. We hereby reproduce the proof for general point processes on Rd;
deep inside, this is the exact same phenomenon as the CLT for determinantal point processes, see Theorem
4.6.1 in the ‘GAF book’, [41]. See also [15] for a more detailed and general treatment.

Theorem 4.3. Let Φ be a hyperuniform point process satisfying (2.1), and such that Var(|Φ∩Br|) > crd−α
for some α ∈ (0, 5d/6]. Then, under the assumption that for every n > 2,

E[|Φ ∩Br|n] = O(rd), (4.3.1)

the process Φ satisfies a central-limit theorem:

|Φ ∩Br| −E[|Φ ∩Br|]√
Var(|Φ ∩Br|)

 N (0, 1) (4.3.2)

when r →∞, where  denotes weak convergence of probability distributions on R.

The proof only relies on moments/cumulants convergence, and we refer to Theorem D.4 at page 65 in
the Appendix. The n-th cumulant of a random variable X will be called Cn(X). From now on, we will note
Xr = |Φ ∩Br| and Yr = (Xr −E[Xr])/

√
Var(Xr).

Proof. To prove convergence towards a standard Gaussian, the strategy is to prove cumulants convergence
as in Theorem D.4, ie to prove that Cn(Yr) → 0 for n 6= 2 and that C2(Yr) → 1 as r → ∞. The first
cumulant is always zero. The second one is always equal to 1, because C2(Yr) = Var(Xr)

−1C2(Xr−E[Xr]) =
Var(Xr)

−1Var(Xr) = 1. The cumulants of ordre n 6= 2 are translation-invariants, ie Cn(X) = Cn(X + c),
hence by the definition of the cumulant measures κn in (A.5.1), we have

Cn(Yr) =
Cn(Xr)

Var(Xr)n/2
=
κn(Br × · · · ×Br)

Var(Xr)n/2
.

Let us assume that n is fixed. If (4.3.1) is true, there is a constant Kn such that E[|Φ ∩ Br|h] 6 Knr
d for

every k 6 n. Going back to the definition of cumulants we see that there is another constant K ′n (certainly
depending on n) such that κn(B × · · · × B) 6 K ′nr

d. Our assumption on Φ entails that Var(Xr)
n/2 >

K ′′nr
n(d−α)/2 for some constant K ′′n and some α ∈ [0, 1). But then, Cn(Yr) = O(rd−n(d−α)/2). This goes to

zero as r →∞ if and only if d < n(d− α)/2, ie n > d/(2(d− α)). But when α < 5d/6, the latter is strictly
smaller than 3, hence we always have n > 3 > d/(2(d− α)).
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The restriction of the couple (α, d) is only apparent: hyperuniform systems cannot have α > 1, hence
there is no restriction when d > 2.

Hypothesis (4.3.1) is trickier. It is formulated here just as in [1], in order to be sufficiently problem-
independent; however, according to the proof, the ‘optimal’ assumption would be to check that the n-th
moment/cumulant of |Φ ∩ Br| is o(Var(|Φ ∩ Br|)n/2) = o(rn(d−α)/2) as r → ∞. In [1], the authors say that
this hypothesis “connects to the classical theory of particle number fluctuations” as in the first papers on
charge fluctuations ([64]). I am personnally not aware of a simple, general method to check such hypothesis.

4.4. Order metrics

For Poisson point processes, one has µ◦ = λ1, hence the term λ−1µ◦−1 is exactly equal to zero. To compare
the degree of order/disorder in a point process, we have different quantities which are called order metrics
and widely used in physics ([79]).

Definition 4.4. Let Φ be a stationary point process on Rd with intensity λ and reduced Palm intensity µ◦.
We suppose that µ◦ has a density % with respect to the Lebesgue measure on Rd. Then, the τ order metric
(TOM) is defined as

τ = τ(Φ) :=

∫
Rd

∣∣∣∣%(x)

λ
− 1

∣∣∣∣2 dx = |λ−1%− 1|22. (4.4.1)

The bigger the order metric, the stronger the order (at all scales) in the point process, with τ = 0 being
characteristic of Poisson processes. If τ is finite, then by Parseval’s relation the Fourier transform of the total
correlation function is also an L2-function, hence in this case

τ =
1

λ2

∫
Rd
|S(ξ)− 1|2dξ. (4.4.2)

Another metric is sometimes used, the hyperuniform order metric (HOM). It is defined only for ‘class I
HU processes’, ie processes with density fluctuations scaling as the window surface:

σ(r) :=
Var(|Φ ∩B(0, r)|)

rd−1
� 1.

For such class-I HU processes, the HOM is defined as the Cesaro average of σ:

Λ = Λ(Φ) := lim
r→∞

1

r

∫ r

0

σ(t)dt. (4.4.3)

If Φ is a type-I process, the function σ is bounded away from 0 and ∞, hence Λ is a positive number.

4.5. Higher order moments than the variance

[85], [78]
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5. Finite sample analysis

Hyperuniformity, as defined earlier through (0), is a property of the probability distribution of Φ, but in
practice we will only have access to finite-size approximations of such processes, for instance to Φ∩B(0, n) as
in computer simulations. Estimating the structure factor of Φ by only resorting to finite-sized approximations
is really important and is central to most experimental papers in physics. This section justifies this point of
view.

5.1. Second-order spectral convergence and empirical structure factor

Let Φ be a stationary point process on Rd with intensity λ and Palm measure P◦. We recall that the pair
correlation is the measure defined as

g2(A) =
1

λ
E◦

 ∑
x∈Φ\{0}

1x∈A

 . (5.1.1)

Let us note Nr = #(Φ ∩ B(0, r)) the number of points of Φ in an accessible window of observation of
radius r — we’ll restrict to Br. The Fourier transform of the configuration of these Nr points is the function
defined for k ∈ Rd by

nr(k) =
∑

x∈Φ∩Br

e−i〈k,x〉. (5.1.2)

It is a bounded, periodic function of k. In the physics litterature, nr is sometimes encountered as the
collective-coordinate function.

In the thermodynamic r →∞ limit, the function ν contains all the information relative to the structure
factor S of Φ. More precisely, let us note Sr the empirical structure factor in a box of radius r:

Sr(k) =
|nr(k)|2

Nr
. (5.1.3)

We can write

Sr(k) =
1

Nr

∑
x,y

e−i〈k,x〉e−i〈k,y〉 = 1 +
1

Nr

∑
x 6=y

e−i〈k,x−y〉 = 1 + F (g2,r) (5.1.4)

where g2,r is the empirical version of the pair correlation function, namely the random point measure defined
by

g2,r =
1

Nr

∑
x,y∈Φ∩Br

x 6=y

δx−y.

The main fact about these measures is contained in the next Theorem and the subsequent proposition.

Theorem 5.1 (Empirical structure factor). If Φ is stationary and ergodic, then almost surely g2,r converges
towards g2 in the Schwartz space, and Sr − δ0 converges towards S as r →∞ in the sense of distributions.

The proof comes from the following proposition.

Proposition 5.2. Let f : Rd → C be integrable with respect to g2. Then, almost-surely,

lim
r→∞

g2,r(f) = g2(f). (5.1.5)

Proof of Proposition 5.2. Take f ∈ L1(g2). We introduce two random variables (for ease of notation, we’ll
systematically drop the ‘∈ Φ’ parts in the sum, all the points x, y belong to Φ):

Yr(f) =
1

Nr

∑
x∈Br

∑
y 6=x

f(x− y) Xr(f) =
1

Nr

∑
x∈Br

∑
y∈Br,x 6=y

f(x− y).
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By the ergodic theorem [REF], one has almost surely limr→∞ Yr(f) = E◦[
∑
x 6=0 f(x)] =

∫
f(u)g2(du).

We now prove that Xr(f)− Yr(f)→ 0 almost surely. The difference Xr(f)− Yr(f) is equal to

1

Nr

∑
x∈Br

∑
y/∈Br

f(x− y).

We split the contributions x, y to this sum in two parts, according if |x− y| > a or |x− y| 6 a, for some a to
be chosen later, and we note Ir(> a) and Ir(6 a) these contributions: we prove that they are both small.

We upper bound I(> a) by dropping the y ∈ Br constraint and we get

Ir(> a) 6
1

Nr

∑
x∈Br

∑
y 6=x

|fa(x− y)|

where fa(u) = f(u)1|u|>a. By the Ergodic theorem again, this converges towards
∫
|fa(u)|g2(du). But

since g2 integrates f , we see that
∫
|fa|g2 → 0 when a → ∞ so we can choose a big enough to ensure that

lim supr→∞ Ir(> a) 6 ε/2.
As for the term Ir(< a), we note that the only couples of points x, y which can contribute to the sum

are those for which x is within distance a from the boundary of Br. Let us note A(r, a) the annulus
{r − a 6 |u| < r}. Since f is bounded we have

Ir(< a) 6
|f |∞
Nr

∑
x∈A(r,a)

#(Φ ∩B(x, a))

6
|f |∞
Nr

∑
x∈Br

#(Φ ∩B(x, a))− Nr−a
Nr

|f |∞
Nr−a

∑
x∈Br−a

#(Φ ∩B(x, a)).

At large but fixed a, we have Nr−a/Nr → 1 almost surely, hence the two terms in the difference above
both converge (by the Ergodic theorem again) towards |f |∞g2(B(0, a)), so for fixed a, limr→∞ Ir(< a) = 0,
concluding the proof.

Proof the Theorem. Once Proposition 5.2 is proved, here is how the Theorem follows. First, note that the
space of Schwartz functions belongs to L1(g2). Since S (Rd) is separable, we can choose a dense sequence
fn and consider the event E = ∪En, where En is the event of the proposition. As a countable union of
probability 1 events, E has itself probability one. From this, it is easy to see that on the event E, for every
f ∈ S (Rd), we have g2,r(f) → g2(f). Thus, on the event E, the measures g2,r converge (as tempered
distributions) towards g2. Since the Fourier transform is continuous, F (g2,r) → F (g2). We saw in (5.1.4)
that Sr = 1 + F (g2,r), so subtracting off δ0 = F (1), we get limr→∞ Sr − δ0 = 1 + F (g2 − 1) = S.

5.2. The variance of the collective-coordinate

Let us note fr,k(x) = e−i〈k,x〉1x∈Br , so that nr(k) =
∑
fr,k(x). The variance formula says that

Var(nr(k)) =
λ

(2π)d

∫
|f̂r,k(ξ)|2S(dξ).

However, f̂r,k(ξ) = 1̂Br (ξ + k), and thanks to (1.4.1),

1̂Br (ξ + k) = rd/2
Jd/2(r|k + ξ|)
|k + ξ|d/2

. (5.2.1)

5.3. How to visually see hyperuniformity

The principal difficulty with long-range orders in point processes such as hyperuniformity, is that is is some-
times undetectable with our human eyes: this type of order is thus often marketed as hidden order in the
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physics litterature. However, the use of Fourier transform can sometimes allow for a more direct detection
of hyperuniformy. As seen earlier, a point process is HU if its structure factor vanishes at the origin. The-
orem (5.1) says that, at least for ergodic processes, the empirical structure factor is almost surely a good
approximation of the real one.

This justifies the pictures in Figure 3, in which I simulated stationary point processes in a finite box and
then represented the corresponding structure factor.

Poisson Grid Perturbed grid Ginibre Matern-II

-500 0 500 -500 0 500 -500 0 500 -500 0 500 -500 0 500
0

5
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5

10+

0

5

10+
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5

10+
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5

10+

Figure 3: Several realizations of planar point processes with around 1000 points, drawn with a colorplot
representation of their structure factor (below). The color represents S(ξ) for ξ = (ξ1, ξ2) in a box of size
1000 around the origin. The darker, the closer to zero. The presence of a darker shape around zero indicates
a hyperuniform point process (S(ξ)→ 0).

A number of point processes we’ll be studying are also isotropic, and in this case their structure factor is
radial. It is thus easier to plot angular averages of the empirical structure factor, ie

sr(t) =
1

2π

∫ 2π

0

Sr((t cos(θ), t sin(θ))dθ.
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6. Rigidity and hyperuniformity

Definition 6.1. Let Φ be a random point process on Rd. A measurable function f is a rigidity statistic for
Φ if for any compact K, the random variable ∑

x∈Φ∩K
f(x)

is a measurable function of Φ ∩Kc. The set of rigidity statistics of Φ will be noted Rig(Φ).

When f ≡ 1 is a rigidity statistic, we simply say that Φ is number-rigidity, which is the most common
rigidity studied in the litterature. Another very important kind of rigidity is when f(x) = xk, which we call
k-rigidity: when k = 0 this is simply rigidity, when k = 1 it means that Φ∩Kc determines the center of mass
of Φ ∩K, etc (see [29]).

A maximal notion of rigidity is maximal rigidity, where we ask the whole configuration Φ ∩ K to be a
measurable function of Φ ∩Kc. Such maximally rigid processes will be encountered in Subsection 7.

6.1. The variance argument

The basic tool for proving rigidity is an elegant Borel-Cantelli-type argument. It can be found in [32] and in
many subsequent papers. We give a more general version than for number-rigidity.

Proposition 6.2. Let Φ be a point process. Suppose that there is a sequence of measurable functions (fn),
such that fn → f pointwise, and

∞∑
n=0

Var

(∑
x∈Φ

fn(x)

)
<∞. (6.1.1)

Then f is a rigidity statistic for Φ.

Proof. Note Sn =
∑
fn(x) and en = E[Sn] and εn = Var(Sn). Let sn be a sequence of numbers going to

zero and such that
∑
εn/sn <∞ (such a sequence always exists). Then by Chebyshev’s inequality,

∞∑
n=1

P(|Sn − en| >
√
sn) 6

∞∑
n=1

εn/sn <∞.

By the Borel-Cantelli lemma, almost surely one has |Sn − en| 6
√
sn = o(1) for any n large enough. Define

Rn =
∑

x∈Φ∩Kc

fn(x)

which is a measurable function of Φ∩Kc. Then, by the properties of fn, the following statements are almost
surely true: ∑

x∈Φ∩K
f(x) = lim

n→∞

∑
x∈K∩Φ

fn(x)

= lim
n→∞

Sn −Rn

= lim
n→∞

en −Rn

and the latter is a limit of random variables which are Φ ∩ Kc-measurables, hence it is overall Φ ∩ Kc-
measurable and Φ is f -rigid.

Thus, proving rigidity amounts to proving serious variance bounds. Note that one can also relax further
this kind of criteria: the core argument of the proof is that there is some measurable function fn with fn → f
pointwise, and such that

∑
x∈Φ fn(x) is o(1)-close to a Φ ∩Kc-measurable random variable — in our case,

its own expectation en.
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Remark 6.3 (rigidity criterion and hyperuniformity). Note that if such functions (fn) do exist, then the
variance Var(

∑
fn(x)) goes to zero. If the functions are chosen so that

∫
fn(x)dx is bounded away from

zero, this immediately implies σ(fn)→ 0, hence f is a hyperuniform statistic for Φ in the sense of Definition
2.3. The assumption of the preceding proposition is thus extremely strong, showing both hyperuniformity
and rigidity.

6.2. Quadratic variance formula

Theorem 6.4. Let Φ be a hyperuniform point process satisfying Hypothesis (2.1). Then,

Var

(∑
x∈Φ

g(x)

)
= −λ

2

∫∫
Rd×Rd

|g(u)− g(u+ v)|2C(dv)du (g ∈ S (Rd)). (6.2.1)

This formula is essential in the theory of determinantal/pfaffian point processes, where it is at the heart
of the paper [12], see also [14, Subsec. 2.2]; it was later used in full generality by Ghosh and Lebowitz in
their paper [30] (look at equation (4) therein) to extend the results in [12]. Those results will be shown later
on at Subsection 6.3 page 30.

Note that the integrated function (u, v) 7→ |g(u) − g(u + v)|2 is not a Schwartz function, it is only a
bounded function. Without any hypothesis on C, the integral above might be ill defined.

Proof of (6.2.1). Develop the right hand side. It is equal to the sum of three terms:

−λ
2

∫
|g(u)|2C(dv)du− λ

2

∫
|g(u+ v)|2C(dv)du+ λ

∫
g(u)g(u+ v)C(dv)du.

The first two ones are zero because for hyperuniform point processes satisfying Hypothesis (2.1) we have seen
in Proposition 2.2 that C(Rd) = 0. The last one is equal to the variance in the LHS of (6.2.1) thanks to the
covariance formula (1.1.5).

6.3. Rigidity from hyperuniformity: one and two dimensions

A crucial result obtained by Ghosh and Lebowitz is that in dimensions 1 and 2, hyperuniformity implies
rigidity, as long as the correlations are sufficiently decaying ([30]). This is no longer true — and still not
very well understood — for higher dimensions, as discussed in the next section. By ‘sufficiently decaying’,
we mean that the measure has four finite moments.

Hypothesis 6.5. A signed measure m has strong decay if its moments of order 1, 2, 3, 4 are finite.

Theorem 6.6 ([30]). Let Φ be a stationary point process on Rd with d = 1 or 2. If C has strong decay and
Φ is hyperuniform, then Φ is rigid.

Note that by the definition of C, the existence of moments for C is equivalent with the existence of moments
for the measure µo−λ1. This theorem encompasses for instance the case of zeros of the GEF as in Subsection
3.5 or the Ginibre process, two examples where rigidity was proved in [36].

Proof. We only do the proof for d = 2, the proof for d = 1 being essentially simpler. The goal is to prove
rigidity using the variance criterion 6.1.1, and to construct a measurable function f taking the value 1 on
B(0, r), such that Var(

∑
f(x)) < ε for arbitrary ε > 0.

We choose some R > 1. Let g be a smooth function supported on B(0, R), smaller than 1 everywhere,
and taking the value 1 in B(0, 1). We set gb(x) = g(x/b) and Sb =

∑
x∈Φ gb(x). We start with (6.2.1):

Var(Sb) =
−λ
2

∫∫
|gb(u)− gb(u+ v)|2C(dv)du.
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First of all, note that if |u| > bR and |u+ v| > bR, the integrand is zero, hence we only have to integrate on
the union of A1 = {|u| 6 bR} and A2 = {|u+ v| 6 bR}; by the triangle inequality, we thus have8

Var(Sb) 6
λ

2

∫∫
A1∪A2

|gb(u)− gb(u+ v)|2|C|(dv)du

6
λ

2

∫∫
A1

|gb(u)− gb(u+ v)|2|C|(dv)du+
λ

2

∫∫
A2

|gb(u)− gb(u+ v)|2|C|(dv)du

6 I1 + I2

and we separately bound those terms. To do this, we write the Taylor development of gb as

gb(u+ v) = gb(u) + b−1〈∇g(u/b), v〉+ h(u, v)

where |h(u, v)| 6 c1|v|2/b2 for some constant c1 depending on g (indeed, c1 = sup ‖H2g(x)‖ where H2g is
the Hessian matrix). We have

|gb(u)− gb(u+ v)|2 6 |∇g(u/b)|2|v|2

b2
+

2|∇g(u/b)||v||h(u, v)|
b

+ |h(u, v)|2

6
|∇g(u/b)|2|v|2

b2
+

2|∇g(u/b)|c1|v|3

b3
+
c1|v|4

b4
.

Let c be a constant greater than first four moments of C, ie c >
∫
|x|k|C|(dx), k ∈ {1, 2, 3, 4}. We have

I1 6
∫
B(0,bR)

∫ (
|∇g(u/b)|2|v|2

b2
+

2|∇g(u/b)|c1|v|3

b3
+
c1|v|4

b4

)
|C|(dv)du

6 c
∫
|∇g(y)|2dy +

2cc0πb
2R2c1
b3

+
πb2R2c1c

b4

6 c
∫
|∇g(y)|2dy +

O(cc0c1R
2)

b
+
O(cc1R

2)

b2

where we also introduced c0 = sup |∇g(x)|, and the constants in the O(·) is universal. A similar bound holds
for I2. Consequently,

Var(Sb) 6 c
∫
|∇g(y)|2dy +

O(cc0c1R
2)

b
+
O(cc1R

2)

b2
(6.3.1)

The last step is thus to find, for any ε > 0, a function g as described in the begining of the proof, and such
that this last bound is smaller than ε. This can be done, and it is the content of the lemma thereafter. We
first choose gε/21c, so that the first term in the RHS of (6.3.1) is smaller than ε/3. Then, c0, c1 and R are
fixed (they might depend on ε), and we take b so large that the two remaining terms in the RHS of (6.3.1)
are smaller than ε/3.

Lemma 6.7. For every ε > 0, there is a function gε : R2 → R which as the following properties: it is
nonnegative, takes the value 1 on B(0, 1) and 0 outside B(0, Rε) for some Rε > 1, it is of class at least C 2,
it is smaller than 1 everywhere, and it satisfies∫

|∇gε(x)|2dx < 7ε. (6.3.2)

We explain a construction which can be found in [36].

Proof. Let us start by setting R′ε = e2/ε. We now a real-valued function a : [0,∞[→ [0,∞[ by

a(t) =


1 if t ∈ [0, 1],

1− log(t)ε/2 if t ∈ [1, R′ε]

0 else.

8We recall that |C| is the ‘absolute value’ of the signed measure C.
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This function is continuous and it is smooth, except at 1 and R′ε. Moreover, for t between 1 and R′ε, we have
a′(t) = −ε/2t and a′′(t) = ε/2t2. These properties ensure that we can find a nonnegative C 2 function b with
|b′(t)| 6 ε/t, |b′′(t)| 6 ε/t2, taking the value 1 on B(0, 1), smaller than 1 everywhere, and being zero outside
B(0, Rε) with Rε = 1 + e2/ε.

We simply define gε(x) = b(|x|). We have ∇g(x) = b′(|x|)x/2|x|, hence

|∇g|22 = 2π

∫ ∞
1

|∇g(r)|2rdrdθ 6 2π

∫ 1+Rε

1

b′(r)2r3

2r2
dr

6 2π

∫ 1+Rε

1

ε2

2r
dr 6 πε2 log(1 +Rε) 6 7ε.

This settles the lemma.

Remark 6.8 (d > 3). The crucial fact in the preceding proof is that we can find gb such that (6.3.1) is true,
and in particular the first term does not depend on b. In dimensions higher than 3, there would be a b factor
there and the subsequent argument would fail.

Remark 6.9. One can further relax the fourth-moment hypothesis to having decaying tails like |x|−4−δ, as
formulated in [30].

6.4. Rigidity from hyperuniformity: three dimensions and more

Consider the perturbed lattice: start with the stationarized lattice U + Zd, then replace each point x by
x+Hx where (Hx) is a collection of iid random variables, say centered Gaussian variables with variance σ2.
The corresponding process will be Φσ; we will come back at length on this model on Section 9.

It turns out that there is a surprising threshold for number rigidity, as proved by Sly and Peres in their
2014 paper [69].

Theorem 6.10 (Peres and Sly). If d > 3, there is a σc(d) > 0 such that Φσ is number-rigid if σ < σc and
not rigid if σ > σc.

But one can also prove that such processes always satisfy (0) and have very strong decay of correlations.
The strict analogue of the results in Subsection 6.3 cannot hold, for those processes with σ > σc are hyperuni-
form and not rigid. Ghosh and Lebowitz conjecture that the relation should be the other way round, namely
that rigidity should imply hyperuniformity. They argue that (verbatim from [34]) “when the variance grows
like |Λ| [the window], it behaves in an additive way for two adjacent domains which seems to suggest that
surface effects become negligible for large |Λ|, which is inconsistent with number rigidity”. However, there
are several interesting counter-examples.

6.5. The link between rigidity and fluctuations: counterexamples

Zeros of some Gaussian process

The existence of one-dimensional, rigid and non-hyperuniform processes is investigated in [56]. The point
process at stake, noted Z, is the set of zeroes of a Gaussian stationary process X = (Xt)t∈R, in other words

Z = {t ∈ R : Xt = 0}.

There are a lot of tools for studying zeroes of gaussians processes, the main one being the celebrated Kac-Rice
formula [44]. The variance of such zeroes can also easily be studied and linked with the covariance function,
see Geman’s paper [28].

Proposition 6.11. Let X be a one-dimensional stationary gaussian field. If the correlation measure C

of a gaussian process X is not proportional to cos(cx)dx for some c, then the set of its zeroes cannot be
hyperuniform.
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On the other hand, the paper shows that if the correlation measure is a sum of cosines, like

C(dx) =
∑
n

ai cos(x)dx,

with (ai) a summable sequence of non-negative numbers, then Z is actually rigid9

Intersecting hyperplanes

The Poisson line intersection process is defined as follows: first, let L be a 2-dimensional Poisson line process,
see for instance [4] or [17]. It is the natural Poisson process on the set of affine hyperplanes of Rd. Its
intersection process is

Φ = {`1 ∩ `2 : `1 6= `2 ∈ L}.

This is a stationary point process with no double point (a.s.). This process and its generalizations is exten-
sively studied in [72]; it turns out that is is hyperfluctuating, that is:

lim
r→∞

Var(#(Φ ∩Br))
|Br|

= +∞.

However, it is very intuitive that this process is actually maximally rigid: almost surely, any line ` ∈ L will
intersect an infinity of other lines in L, thus giving rise to an infinity of aligned points in Φ. If one erases any
finite number of points in Φ, they will still be largely enough of them to first reconstruct the lines, and then
reconstruct the missing points... This intuition was found and made rigorous in [52].

6.6. Other examples of rigidities

Rigidity of Pfaffian processes

Rigidity of some Pfaffian point processes is studied in the paper [14]. The models falling under their results
include symplectic and orthogonal Sines and Bessels point processes.

The sine-beta process is rigid

Rigidity of the sine-beta process Sineβ has been proved independently by Chhaibi and Najnudel in [70] and
by Dereudre, Hardy, Leblé and Mäıda in [19]. Here, Theorem 6.6 might apply, but at the moment (July 7,
2021) there is no way to check if the correlations of the Sineβ process have strong decay, hence rigidity has
to be proved directly.

Chhaibi and Najnudel use the ‘classical’ way described in Subsection 6.1. They exploit the definition of
Sineβ as a limit of normalized eigenvalues of Circular ensembles and then use variance estimates for those
ensembles.

Dereudre et al have another technique, which is up to now the only alternative to the variance arguments,
and which uses the DLR formalism. I will try in a distant future (say, June 2019) to write an account of this
new method, in which hyperuniformity still plays a role.

(more to come)

k-rigidity for GAFs

Kiro and Nishry proved the k-rigidity for the zero sets of some entire functions in [49]. See also [29].

Rigidity for eigenvalues of Schrodinger operators

It is proved in [57] that eigenvalues of random Schrödinger operators are rigid (under certain assumptions on
the randomness). The method uses Feynman-Kac formulas to bound the variance of some linear functionals.

9And in fact, more than rigid: it is completely predictable, see next subsection.
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Non-compact rigidity

The rigidity defined in the former definition is a ‘compact’ rigidity, ie the configuration outside a compact
set determines some feature of the configuration inside the compact. One can ask to what extent this can be
generalized for unbounded sets: what parts of Φ∩C are determined by Φ∩Cc? This notion has been much
less studied than classical rigidity. In one dimension, Bufetov, Dabrowski and Qiu ([13]) proved ‘predictable
rigidity’ for some one-dimensional processes: it means that the point process is completely determined by
the knowledge of points on a half-line, if Φ ∩ (−∞, t] determines Φ for any t; see Appendix C. The paper
[56] explores this notion for point processes which are zeroes of gaussian processes. Proposition 6 therein
says that if a gaussian process is C 1 and if the correlation function C goes to 1 along some subsequence (ie
C(xn)→ 1 for some xn → +∞), then its zeroes form a predictable process.

The Kolmogorov criterion

There is an old rigidity criterion for stationary sequences (not exactly the same thing as stationary point
processes) which dates back to Kolmogorov ([55]). It is in Appendix C.
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7. Extreme rigidity for stealthy hyperuniform processes

This section demonstrates that SH processes are extremely rigid: points cannot accumulate too much but
they also cannot leave big holes, and the whole process is maximally rigid in the sense defined right after
Definition 6.1 at page 29. These beautiful results entirely rely upon the Fourier approach to hyperuniformity;
everything in this section comes from [34]. In the proofs I mention a few ‘ facts’ which are actually purely
analytic and independent of our problems. Their justification is postponed to the end of this section10.

7.1. Anticoncentration and bounded holes

Theorem 7.1 (anti-concentration). Let Φ be a SH point process on Rd with intensity λ and with spectral
gap r or more. Then, there are two constants c0, c1 such that for any open set V with diameter smaller than
c0/r, the number of points of Φ in V is smaller than λc1/r

d.

Proof. As usual, the key is given by the phase-space variance formula (?̂). If f is any function such that f̂
is supported inside B(0, r), then 〈S, |f̂ |2〉 = 0, hence the variance of S(f) is zero and this random variable is
actually almost surely equal to its expectation λ

∫
f(x)dx. Our goal is to show the following fact.

Fact 1. There is a (deterministic) function f and a constant c0, and such that

1. f is nonnegative and f(x) > rd for any |x| 6 c0/r,

2. f̂ has support inside B(0, r).

If such things exist, then almost surely one has

rd|Φ ∩B(0, c0/r)| 6
∑
x∈Φ

f(x) = λ

∫
Rd
f(x)dx =: c1.

One can then easily use the mass transport principle to show that this is indeed true for any B(x, c0/r), and
for any open set with diameter smaller than c0/r.

Theorem 7.2 (Bounded holes theorem). Let Φ be a SH point process on Rd with intensity λ and with spectral
gap r or more. There is a constant c such that almost surely, any ball of radius c/r contains at least one
point of Φ.

Proof. We will suppose that the intensity is 1. Set R > 0, δ = c0/r with c0 the constant in the Anti-
concentration Theorem, and define the square annulus B` = {δ(R + `) 6 |x|∞ < δ(R + ` + 1)} for every
` > 0. For ` = 0 we set B0 = B∞(0, δR).

Let f be the function whose existence was proved in Fact 1, so that almost surely one has∑
`=0

∑
x∈Φ∩B`

f(x) = c1 > 0. (7.1.1)

Define X` to be the `-th term in this sum. The sketch of the proof is as follows: one can show that for ` > 0,
the random variable X` is O((R + `)−2). Hence, if R is chosen so that there are no points in B0, then the
whole sum above is going to be

∑
n>R n

−2 = O(R−1), which shows that R cannot be too big.

Formally, let E = E(R) be the event {Φ has no points in B0}. If this event had zero probability for every
R, this would mean that Φ has an atom at zero, which is not true since Φ is stationary. We thus choose some
R > 0 such that P(E(R)) > 0 and from now on we will work on this event: there are no points of Φ in B0.
The sum in (7.1.1) can thus be started at ` = 1.

10And I will probably write them later this year.
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Fact 2. Almost surely,

∀` > 0, X` 6
c2
r

|Φ ∩B`|
|(R+ `)δ|d+1

(7.1.2)

for some constant c2.

Now, consider the following. For every `, one can cover the annulus B` with a finite number of small
square boxes and with diameter δ.

Fact 3. Actually, one can take fewer than c3|(R+ `)δ|d−1 such boxes, for some constant c3.

By the anticoncentration theorem, each of those boxes cannot contain more than c1/r
d points of Φ, thus

the number of points of Φ inside B` is smaller than

c1c3|(R+ `)δ|d−1

rd
.

Using this bound and Fact 2 to bound every term in the LHS of (7.1.1), one gets

c1 6
c1c3
rd+1δ2

∞∑
`=1

1

(R+ `)2
6

2c1c2c3
c20r

d−1R
=

c

rd−1R
.

As a byproduct, we also have the bound R 6 2c2c3/c
2
0r
d−1.

7.2. Maximal rigidity of SH processes

We recall that a PP is maximally rigid if Φ∩K is a measurable function of Φ∩Kc: if the points outside the
compact K are revealed, then we are able to entirely reconstruct the points of Φ in K. The proof is adapted
from [34], and it is valid in any dimension d.

Theorem 7.3 (maximal rigidity). Stealthy hyperuniform point processes are maximally rigid.

Proof. It is enough to prove such a theorem when K is a ball and for simplicity we assume that λ = 1. The
set of points Φ ∩K is as finite, and is entirely characterized by the Fourier transform

χ(ξ) :=
∑

x∈Φ∩K
e−i〈ξ,x〉

hence we only have to prove that χ a measurable function of Φ∩Kc. Consider a small ball B(0, 3δ0) entirely
included in U , the open set on which the structure measure S vanishes. Let δ < δ0. Then the function
h = 1B(0,δ) ∗ 1B(0,δ) is supported inside B(0, 2δ) ⊂ U . Using (1.4.1) we see that the function defined by

fδ(x) =
δdJd/2(δ|x|)2

|x|d

satisfies f̂δ = hδ. We now set Fµ,δ(z) := ei〈z,µ〉fδ(z). Thanks to the symmetries of the Fourier transform,

this function satisfies F̂µ,δ(ξ) = hδ(ξ − µ), hence if |µ| < δ0 it is supported inside B(µ, 2δ) ⊂ B(0, 3δ0) ⊂ U :
it is in the kernel of S, hence the random variable

∑
x∈Φ Fµ,δ(x) has zero variance (see Remark 1.6) and one

has almost surely ∑
x∈Φ∩K

ei〈x,µ〉fδ(x) =
∑

x∈Φ∩K
Fµ,δ(x) = c(µ, δ)−

∑
x∈Φ∩Kc

Fµ,δ(x) (7.2.1)

where c(µ) =
∫
Fµ,δ. The RHS is a measurable function of Φ ∩ Kc, say Gδ(Φ ∩ Kc, µ). Moreover, (7.2.1)

is almost surely simultaneously true for all µ ∈ B(0, δ0) with rational coordinates and δ rational and small.
Note that thanks to the Bessel asymptotics Jν(x) ∼ Γ(ν + 1)−1(x/2)ν when x→ 0, we see that fδ(x)/δ2d →
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C(d) > 0 when δ → 0, where C(d) is a constant. We divide each member of (7.2.1) by C(d)δ2d and take the
limit along a sequence of rational numbers (δn) going to zero.

χ(µ) =
∑

x∈Φ∩K
ei〈x,µ〉 = lim

n→∞

∑
x∈Φ∩K

ei〈x,µ〉 fδn(x)

C(d)δ2d
n

= lim
n→∞

Gδn(Φ ∩Kc, µ)

C(d)δ2n
.

This is true for all µ ∈ B(0, δ0) with rational coordinates. But χ is continuous, hence it is also a measurable
function of Φ ∩Kc as requested.

Question 7.4. Let Φ be a SH point process and Ψ an infinite subset of its points. Is Φ a measurable function
of Ψ? In other words, if I remove an infinite number of points of Φ, can I recover Φ?
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8. Statistical systems in higher dimensions: gases, plasmas,

jelliums

We review in this section some questions and results about rigidities of statistical systems, and in particular
Coulomb gases in two dimensions. In particular, we state the result obtained in three dimensions by Sourav
Chatterjee in 2017 in his paper [16], and recently extended to all dimensions by Ganguly and Sarkar in [27]:
hyperuniformity for the hierarchical Coulomb gas. Very few other rigorous results are known.

8.1. Definition of the one-component plasma

The Gibbs canonical distribution in d dimensions with n particles in a window Λ is the probability distribution
whose density with respect to the Lebesgue measure on Λ is given by

1

Zn,β
exp {−βHn(x1, . . . , xn)}

where β is the inverse temperature, Zβ,n is a normalization factor and Hn is the Hamiltonian of the system
defined by11

Hn(x1, . . . , xn) =
1

n

n∑
i=1

V (xi) +
1

n2

∑
i 6=j

w(xi, xj). (8.1.1)

Here, V is a confining potential, typically V (x) = |x|2/2, and w is an interaction. Coulomb systems are when
w is the solution of the Poisson problem, ie

w(x) =

{
− log |x| in two dimensions

1
(d−2)|x|d−2 when d > 3.

(8.1.2)

In two dimensions, several concurrent denominations are often found in the litterature, such as jellium, log-
gas, one-component plasma. The corresponding random point process will be noted Φn, and the interesting
regime is when n→∞ and Λn = [−

√
n/2,

√
n/2]2.

Remark 8.1 (existence of a limit). One might wonder if Φn has a limit when n → ∞, the thermodynamic
limit. In two dimensions, it is not known how to mathematically construct such an infinite-volume limit,
except when β = 2: in this case, Φn is the finite Ginibre point process, and it converges towards the infinite
Ginibre process defined in Example 3.3.

8.2. Jancovici-Lebowitz-Magnificat laws

The fluctuations of the number of particles of Coulomb gases in the thermodynamic limit attracted a con-
siderable attention in the physics litterature, well beyond second-order properties such as hyperuniformity,
who was derived non-rigorously in the pionneer paper [64]. If Φ is hyperuniform, then by the Chebyshev
inequality,

P(|#(Φ ∩Br)− |Br|| >
√
|Br|)→ 0.

In [43], Jancovici, Lebowitz and Magnificat made several predictions on the probability that |#(Φ∩Br)−|Br||
exceeds |Br|α for various α, not necessarily 1/2. Following their notations, we note Qr = |#(Φ∩Br)− |Br||
the ‘discrepancy‘ of the system in a ball of radius r.

P(Qr > rα) ∼ exp
{
−cαrφ(α)

}
(8.2.1)

where cα is a constant and the rate function φ undergoes several distinct regimes.

11We neglected the particle charge e.
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1. When α ∈ (1/2, 1], one has φ(α) = 2α− 1.

2. When α ∈ (1, 2), one has φ(α) = 3α− 2.

3. When α = 2, φ(α) = 4.

4. Finally, when α > 2, the deviations become of order r2α ln(r).

The constants cα also have explicit conjectured expressions.
These predictions are called “JLM laws”. There is one case in which they can be explicitly proved: when

β = 2, the system is totally integrable and is indeed the Ginibre ensemble, see for instance [22] and discussions
in [35]. In all the other cases, nothing is rigorously known. Hyperuniformity is indeed a crucial first step in
understanding these laws, but at the moment almost nothing is known.

8.3. Local laws

The existing results from the mathematical litterature that are closer to JLM laws are the so-called local
laws, see in particular [7, 60]. Informally, these bounds state that Qr has order o(r2) with high probability.
Hyperuniformity states that the order is at least o(r).

8.4. The Hierarchical Coulomb gas

The Coulomb gas in d dimensions is a random set of n points in [0, 1]d whose density with respect to the
Lebesgue measure is

1

Z(β)
exp

−β∑
i 6=j

w(xi, xj)

 . (8.4.1)

Here Z(β) is the partition function, β is the inverse temperature and w is an interaction. In the case of the
hierarchical Coulomb gas, this interaction is defined as follows. We divide the unit cube [0, 1]d into 2d small
cubes of side length 1/2, then we divide each of these cubes, etc. For x 6= y in the unit cube, we set

w(x, y) = 2(d−2)(k−1) (8.4.2)

where k is the first integer so that x and y do not belong to the same cube with side length 2−k.
The point process thus obtained will be noted Φn. The dimension d is always supposed to be 3 or more.

Suppose that U is an open set in the unit cube. Then the number of points inside U should be proportional
to n, hence we would like to prove something like Var(|Φn ∩ U |)/n = o(1). This will be the content of the
theorem, and for technical reasons we restrict to admissible open sets, which are :

• nonempty, open, connected,

• whose boundary is a smooth closed orientable surface.

Note that this encompasses virtually all the window shapes, not only balls.

Theorem 8.2 (Macroscopic hyperuniformity, [16, 27]). Let U be an admissible open subset of [0, 1]d. Then
E[|Φ ∩ U |] = |U |n. Moreover, there are two positive constants c(U, β), C(U, β) such that

c(U, β)

n1/d
6

Var(|Φn ∩ U |)
n

6
C(U, β) log(n)13

n1/d
. (8.4.3)
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9. Perturbations of point processes

Let Ψ be a a stationary point process on Rd. Each node x ∈ Ψ is then displaced by a vector Vx; The resulting
point process will be noted Ψ, although it depends on Ψ and V :

Φ = ΦΨ,V = {x+ Vx : x ∈ Ψ}. (9.0.1)

We do not specify the distribution of the Vx for the moment, but we will always ask that the resulting lattice
is itself stationary and has no multiple points. Such requirements are dubbed Hypothesis (S) (for Simplicity):

ΦΨ,V is a stationary, simple, point process. (S)

This is obviously the case for the basic model we are going to study, which is when Ψ is a stationarized
lattice (say, U + Zd) and when (Vx) is a family of independent continuous random variables with common
distribution V . It will be refered to as independently perturbed lattice (IPL), a model studied in numerous
domains with different point of views.

9.1. Fluctuations of perturbed processes

The extent to which the fluctuations in a process are modified by pointwise perturbations depends on the
strength of the perturbations. The following result generalizes [82] in the context where we do not assumptions
on the independence of the Vx.

Theorem 9.1. Let Φ be a hyperuniform point process and let Ψ = {x + Vx : x ∈ Φ} be its perturbation.
Let δ : R+ → R+ be an increasing function with δ(t) = o(t) and let Xδ be the number of x ∈ Φ such that
|Vx| 6 δ(|x|). If Xδ is almost surely finite, then

lim
r→∞

|#(Ψ ∩Br)−#(Φ ∩Br)|√
|Br|

= 0 (9.1.1)

in probability. Moreover, if E[X2
δ ] <∞, the convergence holds in L2 and Ψ is itself hyperuniform.

Note that the theorem is valid with no assumption on the joint distribution of the variables Vx — it is
only implicitly assumed that Ψ is stationary, but they might have strong dependencies. Obviously, their
dependencies will influence the choice of δ.

Proof. There are two reasons why #(Φ∩Br) and #(Ψ∩Br) might differ: either one point x of Φ in Br has
x+ Vx outside Br, or one point x of Φ outside Br has x+ Vx inside Br. These points are of two kind.

(1) Either x has r−δ(r) 6 |x| < r+δ(r). There are at most #(Φ∩Br+δ(r))−#(Φ∩Br−δ(r)) such points.
(2) Or |x| > r + δ(r) or x < r − δ(r), in which case |Vx| > δ(|x|), and there are less than Xδ such points.
Gathering both bounds yields

|#(Φ ∩Br)−#(Ψ ∩Br)|
|Br|1/2

6
Xδ

|Br|1/2
+
|#(Φ ∩Br+δ(r))−#(Φ ∩Br−δ(r))|

|Br|1/2
.

If Φ is hyperuniform, the second term goes to zero in probability as long as δ(r) = o(r). This settles the first
part of the theorem, since Xδ/|Br|1/2 → 0. The second part follows by taking the square expectations.

Of course, it remains to study Xδ, depending on the distribution of V and Φ. The easiest case is when the
perturbations are iid and have moment conditions. Let us note f(x) = 1|Vx|>δ(|x|). Then, Xδ =

∑
x∈Φ f(x),

so by Campbell’s formula

E[Xδ] =

∫
R2

f(u)du =

∫
R2

P(V > δ(u))du = |Sd−1|
∫ ∞

0

rd−1P(V > δ(r))dr.
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If δ is chosen so that this expectation is finite, then Xδ <∞ almost surely. For Gaussian random variables,
δ(r) = rτ is enough, with τ < 1. In general, if E[|Vx|d+ε] < ∞, then taking δ(r) = rτ for some τ < 1 has
the same effect. Indeed in this case P(V > δ(r)) 6 c/r(d+ε)τ , so choosing d/(d+ ε) < τ < 1 ensures that the
integral above converges.

The preceding theorem has a very interesting consequence regarding the estimation of the spectrum of a
perturbed process. We recall that the collective-cooordinate function of a perturbed lattice Φ is given by

nr(k) =
∑

x∈Φ∩Br

e−i〈x,k〉 =
∑
x∈Ψ

x+Vx∈Br

e−i〈x,k〉.

However, since this sum might involve points x far away from Br but with Vx so large that x+ Vx actually
falls in Br. It is much simpler to compute the function

ñr(k) =
∑

x∈Ψ∩Br

e−i〈x+Vx,k〉.

Lemma 9.2. If Φ and Ψ are hyperuniform, |nr − ñr|∞/
√
|Br| converges to zero in probability.

Proof. In the difference nr − ñr, only the points x which are in the symmetric difference between Φ∩Br and
Ψ ∩Br contribute, and each of these contributions is bounded by 2. Since Φ and Ψ have the same intensity,
we thus have |nr(k)− ñr(k)| 6 2|#(Φ∩Br)−#(Ψ∩Br)| and we only have to check that this quantity divided
by |Br|1/2 goes to zero . It is the case if both processes are hyperuniform. The proof shows that the bound
is uniform in k.

Note that any normalization like r−a(nr − ñr) for a > 1 hence converges to zero almost surely. The most
interesting consequence of this result is that one can approximate the structure factor using ñr instead of nr:

S̃r :=
|ñr|2

Nr
→ S + δ0 (9.1.2)

in the sense of distributions.

9.2. Correlations and structure measure of perturbed point processes

We hereby state the main computation for the statistics of perturbed point processes, which is just a refine-
ment of an argument given in the appendices of [51] using the point of view of ergodicity to rigorously pass
to the thermodynamic limit.

Theorem 9.3. Let Ψ be a stationary, ergodic point process on Rd with structure factor SΨ and let (Vx)x∈Ψ

be an iid family of random variables with common distribution V and characteristic function ϕ. We suppose
that the perturbed point process

Φ = {x+ Vx : x ∈ Ψ}

satisfies Hypothesis (S). Then, the structure measure SΦ of ΦΨ,V is given by

SΦ = 1− |ϕ|2 + |ϕ|2.SΨ (9.2.1)

where f.SΨ denotes the usual product between a tempered distribution and a bounded function12

12See appendix B.1. Here SΨ is a measure, so the f.SΨ is simply the measure with density f with respect to SΨ.
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Proof. We compute the expectation of S̃r(k) = |ñr(k)|2/Nr and condition out the perturbations:

E[S̃r(k)] = E

1 +
1

Nr

∑
x,y∈Ψ∩Br

x 6=y

e−i〈x−y,ξ〉e−i〈Vx−Vy,ξ〉



= E

1 +
1

Nr

∑
x,y∈Ψ∩Br

x 6=y

e−i〈x−y,k〉E
[
e−i〈Vx−Vy,k〉

]

= E

1 +
1

Nr

∑
x,y∈Ψ∩Br

x 6=y

e−i〈x−y,k〉ϕ(k)ϕ(k)∗



= 1 + |ϕ(k)|2E

 1

Nr

∑
x,y∈Ψ∩Br

x 6=y

e−i〈x−y,k〉


= 1 + |ϕ(k)|2E[SΨ(k)− 1].

We thus have E[S̃r(k)] = 1 − |ϕ(k)|2 + |ϕ(k)|2E[SΨ,r(k)]. The RHS converges in the sense of distributions
towards 1− |ϕ|2 + |ϕ|2.E[SΨ] = 1− |ϕ|2 + |ϕ|2.SΨ and the LHS converges to E[SΦ] = SΦ.

We get an interesting corollary which appeared in the paper [51, Appendix B]. In the statement, by
‘nontrivial’, I mean that the perturbation V is not a constant.

Corollary 9.4. Nontrivially perturbed point processes cannot be stealthy hyperuniform.

Proof. For any positive Schwartz function f ∈ S (Rd), one has

〈SΨ,V , f〉 >
∫
Rd
f(x)(1− |ϕ(x)|2)dx.

The characteristic function of a nonconstant random variable can never have modulus 1 in a neighborhood
of the origin, hence one can find functions f with arbitrary small support and for which the right-hand side
of the preceding inequality is nonzero, forbidding stealthiness.

Another crucial corollary is that we only have to inverse the Fourier Transform to get back the correlation
measure of perturbed point processes. The convolution between tempered distributions is defined in(B.2.1),
at page 59 in the Appendix.

Corollary 9.5. If the random variable V is absolutely continuous with probability density function p, the
correlation measure C of Φ is given by

C(dx) = δ0 + λ[(p ∗ p̃) ∗ g2 − 1] (9.2.2)

where p̃(t) = p(−t), ∗ denotes the convolution operator between tempered distributions, and g2 is the pair
correlation measure of the original point process Ψ.

Proof. The Fourier transform is injective, so we only have to check that the FT of (9.2.2) matches SΨ given
in (9.2.1). It is sufficient to check that F [p ∗ p̃ ∗ g2 − 1] = |ϕ|2F [g2 − 1]. Since p is a probability density,
p ∗ p̃ ∗ 1 = 1, hence F [p ∗ p̃ ∗ g2 − 1] = F [p ∗ p̃ ∗ (g2 − 1)] = |ϕ|2F [g2 − 1].

Remark 9.6. The preceding Corollary can easily be extended: it remains valid for any V whose distribution,
say ν, can be convoluted with the measure g2. The formula is exactly the same.
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Example 9.7 (correlations of perturbed lattices). Let Ψ = U + L be a stationarized lattice with intensity
λ. The correlation measure g2 is λ−1∆L∗ = λ−1

∑
x∈L,x 6=0 δx. Then we perturb it into Ψ = {x+Vx : x ∈ Ψ}.

If the perturbations are independent and distributed as some random variable V with probability density p,
then the correlation is

C(dx) = δ0 +
∑

z∈L\{0}

(p ∗ p̃)(z − x)− λ, (9.2.3)

see for example [51].

References to include

Gabrielli : [26]. Recovering the underlying lattice : [82]. Sodin and Tsirelson : [75]. Rigidity and tolerance :
[69]. Cloaking : [51]. Matchings : [54]. DFS on perturbed lattices : [37], IPL study : [31]
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10. Reconstruction and rigidity of the independently

perturbed lattice

In this section we restrict to the case Ψ = L, with L a Bravais lattice such as Zd for instance, and we perturb
it with iid perturbations Vx, thus obtaining the point process Φ = ΦL,V . This process is hyperuniform and
its number fluctuation are easily studied. But it is rigid ? There is also a closely related question regarding
what I call reconstructibility.

Definition 10.1. Let Φ,Ψ be two point processes. We say that Ψ is Φ-reconstructible if there is a measurable
function such that Ψ = F (Φ) almost surely.

Rigidity and reconstructibility are different notions, but they both describe how processes are sensitive
to perturbations: deletion of points for rigidity, spatial perturbation of points for reconstructibility.

When it comes to perturbed lattices, it turns out that their rigidity and reconstructibility depend on the
dimension and the strength of the perturbations. The results in this section can be summarized as follows
when the perturbations are iid Gaussians with variance σ2.

(i) In one or two dimensions, Φ is rigid and Ψ-reconstructible.

(ii) When d > 3, Ψ is Ψ-reconstructible, but there is a σc(d) > 0 such that Φ is rigid if and only if σ < σc(d).

For the first point, rigidity is a consequence of Theorem 6.6. The proof for reconstructibility is the same in
all dimensions and done in the first subsection; in the second one we focus on the rigidity statement in the
second point.

10.1. Reconstructibility: a positive result

We recall that nr, the ‘collective coordinate function’, was defined in (5.1.2). The original lattice is Φ = L
and the perturbed one is Ψ. The perturbations are iid copies of a common random variable V . We define

Lr(ξ) :=
|nr(ξ)|

#(Φ ∩B(0, r))
=

1

#(Φ ∩B(0, r))

∣∣∣∣∣∣
∑

w∈Φ∩B(0,r)

e−i〈x,ξ〉

∣∣∣∣∣∣ . (10.1.1)

Theorem 10.2. We suppose that E[|V |d+ε] <∞ for some ε > 0. Then, with probability one, the following
holds:

lim
r→∞

Lr(ξ) =

{
ϕ(ξ) if 2πξ ∈ L∗

0 else
(∀ξ ∈ Rd) (10.1.2)

where ϕ(ξ) = E[e−i〈ξ,V 〉] is the Fourier transform of V .

This allows to reconstruct the dual lattice L∗, and then the original lattice. It is easy to prove that
(10.1.2) holds almost surely for a single ξ ∈ Rd, but proving that (10.1.2) holds almost surely simultaneously
for every ξ is subtler (and is the content of [82]).

Proof of a.s. convergence for any fixed ξ. Let us fix ξ ∈ Rd. We note L̃r(ξ) = |Br|−1ñr(ξ). By independence,

E[Lr(ξ)] =
1

|Br|
∑

x∈L∩Br

e−i〈x,ξ〉E[e−i〈Vx,ξ〉] =
ϕ(ξ)

|Br|
∑

x∈L∩Br

e−i〈x,ξ〉.

44



It is a classical result that this last term converges as r → ∞ towards ϕ(ξ)1ξ∈2πL∗ , where L∗ is the dual
lattice. We now turn to the second moment:

E[|L̃r(ξ)|2] =
1

|Br|2

#(L ∩Br) +
∑

x,y∈L∩Br
x 6=y

e−i〈x−y,ξ〉ϕ(ξ)ϕ(ξ)


=

1

|Br|2

#(L ∩Br) + |ϕ(ξ)|2
∣∣∣∣∣ ∑
x∈L∩Br

e−i〈x,ξ〉

∣∣∣∣∣
2

−#(L ∩Br)|ϕ(ξ)|2


=
#(L ∩Br)(1− |ϕ(ξ)|2)

|Br|2
+ |E[L̃r(ξ)]|2

which shows that Var(L̃r(ξ)) = O(1/|Br|) = O(r−d). In dimension d > 2, this is summable; we only need
to apply the Borel-Cantelli lemma to prove that L̃r(ξ) → ϕ(ξ)1ξ∈2πL∗ almost surely, and then we need to

check that Lr(ξ)− L̃r(ξ)→ 0 almost surely — an easy consequence of Lemma 9.2 along with the discussion
after Theorem 9.1.

For the illustration in Figure 4, I took L = G∗τZ2 where G is given by

G =

(
1.75516512 0.23971277
−0.95885108 0.43879128

)
.

The perturbation V is gaussian, V ∼ N (0, σ2), and it is well known that ϕ(ξ) = exp{−σ2|ξ|2/2}. In order

to have a striking illustration of Theorem 10.2, we will plot ξ 7→ e
σ2|ξ|2

2 Lr(ξ), which converges as r → ∞
towards 1 if and only if ξ ∈ L∗.

10.2. Rigidity and tolerance: a negative result

We now turn to the rigidity of Ψ as in the Peres-Sly paper [69]. In one and two dimensions, the question is
settled by Theorem 6.6.

Two random variables X,Y are said to be mutually absolutely continuous if for any event E, we have
P(X ∈ E) = 0 iff P(Y ∈ E) = 0. They are said to be mutually singular when they are supported on disjoint
subsets.

Definition 10.3. A point process Φ is deletion-tolerant if there is a random variable X with values in Φ,
such that the distribution of Φ \ {Z} is absolutely continuous with respect to the distribution of Φ.

In other words, one can remove the point Z from Φ without being detected. It is proved in [69] that if a
process is rigid, it cannot be deletion-tolerant. We do not prove this, but we are going to check a condition
on the perturbations V to ensure that a process is or is not deletion-tolerant, which is already a significant
result.

The statement and proof make use of the exponential intersection tails property, which is defined now.
First, an oriented path on Ψ is a sequence of distinct points in Ψ, say (γt)t>0 with γt+1 6= γt for each t. Let
γ, γ′ be two independent and identically distributed random variables on oriented paths. We say that their
common distribution ν has the exponential intersection tails property with parameter θ ∈ (0, 1) if

ν ⊗ ν{(γ, γ′) : E(γ, γ′) > n} = O(θn) (10.2.1)

where E(γ, γ′) is the number of common edges of γ and γ′. The existence of random paths with the EIT
property will be discussed later.

We now introduce another constraint on these paths. We say that a random variable γ on oriented paths
on Ψ has the BEIT property with parameters θ, C if it has the EIT property with parameter θ, and if in
addition,

∀t > 0, |γt+1 − γt| 6 C. (10.2.2)
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Figure 4: The above picture shows the perturbed lattice. The little black dots are the original lattice points
x ∈ L while the corresponding green dots are the perturbed points x + Vx, where Vx ∼ N (0, σ2) where

σ2 = 5. The lower left panel is a colorplot of the function ξ 7→ e
σ2|ξ|2

2 Lr(ξ) on the window W = [0, 20]2; this
function converges as r → ∞ towards 1 if and only if ξ ∈ L∗. The dual lattice L∗ in the same window is
displayed in the lower right panel.
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In other words, the path does not do jumps with size bigger than C.

Definition 10.4. The point process Ψ is (θ, C)-escapable if, conditionnally on Ψ, there is a random variable
on directed paths on Ψ with the BEIT property with parameters (θ, C). Such paths will be called ‘escape
paths’.

Remark 10.5. I asked these paths to have distinct points, ie no loops/self-avoiding. However, it is not a
restriction. If one has a path γ which is possibly loopy but still goes go ∞, then one can erase the loops in
γ with some specific procedure and get a self-avoiding path γ̂ and it is clear that for any other path γ′ one
has E(γ, γ′) > E(γ̂, γ′).

Theorem 10.6 ([69], Proposition 2.1 slightly improved). Let Ψ be a (θ, C)-escapable point process and let
V be an absolutely continuous random variable with support Rd and density g. Then, there is a number
θc(d) > 1 such that if

max
|u|6C

∫
Rd

(
g(x+ u)

g(x)

)2

g(x)dx < θc(d) (10.2.3)

then the independently perturbed lattice Φ = ΦΨ,V is deletion-tolerant.

A generalization to random perturbations with smaller support (such as uniform) is in [3]. Regarding
which Ψ are escapable, I refer to the discussion after the proof.

Proof. Let Ψ be the underlying point process. Everything will be conditional on Ψ, and I will emphasize
this fact by using EΨ as a notation for the conditional expectation with respect to Ψ. From now, we fix a
probability distribution on oriented paths on Ψ with the BEIT property conditionaly on Ψ. It will be noted
by η. Let V = (Vx)x∈Ψ be the set of perturbations and γ = (γt)t∈N be a fixed oriented path on Ψ. We note

V γx =

{
Vx + γt+1 − γt if x ∈ γ, x = γt

Vx else.

In other words, the perturbations are ‘shifted’ along the path γ. We note ν the distribution of Φ = ΦΨ,V ,
νγ the distribution of Φγ := ΦΨ,V γ and ν̃ the distribution of Φ̃ := ΦΨ,V Γ where Γ is a random path with
distribution η. For any event E,

ν̃(E) =

∫
νγ(E)η(dγ). (10.2.4)

Lemma 10.7. ν̃ is the probability distribution of Φ∗ := {x + Vx : x 6= γ0} = Φ \ Z where we noted Z the
random variable γ0 + Vγ0 .

Proof. Each point in Φ̃ is a perturbation of a point in Φ \ γ0 and these perturbations are iid.

Let m be an integer and let νm be the probability distribution of

Xm := {Vx : x ∈ Ψ ∩B(0,m)}.

We similarly define νγm and ν̃m. Those are probability distributions on Rdk where k = |Ψ ∩ B(0,m)| is the
number of points of Ψ in B(0,m). Finally we set Fm = dν̃m/dνm (it is a Radon-Nikodym derivative). Then,

EΨ[Fm(Xm)2] =

∫
Fm(v)2νm(dv)

=

∫ (∫
dνγm
dνm

(v)η(dγ)

)2

νm(dv)

=

∫ ∫ ∫
dνγm
dνm

(v)
dνγ

′

m

dνm
(v)η(dγ)η(dγ′)νm(dv)

=

∫ ∫ [∫
dνγm
dνm

(v)
dνγ

′

m

dνm
(v)νm(dv)

]
η(dγ)η(dγ′). (10.2.5)
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Let us focus on the term in brackets. It is clear that due to the Vxi being independent, νm is indeed equal
to the product measure

k⊗
i=1

g(vi)dvi.

Similarly, let us fix γ and note δt = γt+1 − γt. By independence, we have

νγm(dv1, . . . ,dvk) =

k⊗
i=1

g(vi + αi)dvi

where αi = 0 if vi /∈ γ, and αi = δt if x = γt. A similar fact holds for γ′. Consequently, the term inside
brackets in (10.2.5) above is[∫

dνγm
dνm

(v)
dνγ

′

m

dνm
(v)νm(dv)

]
=

k∏
i=1

∫
g(vi + αi)

g(vi)

g(vi + α′i)

g(vi)
g(vi)dvi.

If vi is in γ and not in γ′, then clearly the integral above is equal to 1, because g is a probability density.
Consequently, the non-trivial contributions in the product above correspond to the i such that vi ∈ γ ∩ γ′,
say vi = γt = γ′s. In this case, one has∫

g(vi + αi)

g(vi)

g(vi + α′i)

g(vi)
g(vi)dvi =

∫
g(vi + δt)

g(vi)

g(vi + δ′s)

g(vi)
g(vi)dvi

6

√∫ (
g(vi + δt)

g(vi)

)2

g(vi)dvi

√∫ (
g(vi + δ′s)

g(vi)

)2

g(vi)dvi

6
√

Σ(δt)Σ(δs)

where we noted Σ(u) =
∫

(g(v + u)/g(v))2g(v)dv. We made the hypothesis that

sup
|u|6C

Σ(u) 6 τ/θ

where θ is the EIT parameter, τ is a fixed number in (0, 1) and C the maximum size of the steps in the path.
Let us note Nm(γ, γ′) the number of points in B(0,m) belonging to γ ∩ γ′. Going back to (10.2.5),

EΨ[Fm(Xm))2] 6 EΨ

∫∫ ∏
t∈Nm(γ,γ′)

τ

θ
η(dγ)η(dγ′)

= EΨ[(τ/θ)Nm(γ,γ′)]

=

∞∑
n=0

PΨ(Nm(γ, γ′) = n)(τ/θ)n

6
∞∑
n=0

PΨ(E(γ, γ′) > n)(τ/θ)n

=

∞∑
n=0

O(τN ) 6 O((1− τ)−1) (10.2.6)

where we used the θ-EIT property in the last line. The random variables Fm(Xm) = dν̃m/dνm are positive
martingales and it is known (see [21], Section 4.3.3) that Fm converges ν-almost surely to F . Additionally,
if they are L2-bounded, then

ν̃(E) =

∫
E

F (v)ν(dv)

and ν̃ � ν. But (10.2.6) precisely says that Fm(Xm) is L2-bounded, so we proved that ν̃ � ν and since ν̃ is
the law of Φ∗ = Φ \ Z (see the lemma above), then the proof that Φ is deletion-tolerant is complete.
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Condition 10.2.3 simplifies when g is the density of a gaussian random variable with variance σ. A simple
computation shows that it is true as soon as σ is large enough.

Let us now discuss the ‘escapable’ property for point processes.

1. For regular lattices, like Zd or the triangular lattice, the point process is naturally embedded with a
graph structure where each point x is linked with its neighbors x+ e where e runs through the lattice
basis. Finding ‘escape paths’ then reduces to finding random walks on Zd with the EIT property. Such
a problem is discussed in [9], where it is essentially proved that paths with EIT exist when d > 3 and
do not when d < 3 — actually, when d > 4, the simple random walk has the EIT property.

2. For general processes Φ, one can prove the existence of escape paths by using matchings (inspired by
[54]): let τ : Zd → Φ be a matching (for instance, closest iterative neighbor, or stable matching). If γ
is an escape path in Zd, then τ(γ) is an escape path in Φ and since τ is one-to-one, τ(γ) has the EIT
iff γ has the EIT. The jump condition might not be trivial to satisfy!

10.3. Invisibility of the underlying lattice: cloaking

Let Φ = U + L be a stationarized lattice and let Ψ = {x + Vx : x ∈ Φ} be its perturbed version, where the
perturbations are iid versions of a common random variable V with density p. The correlation measure C of
Ψ is given by (9.2.3):

C(dx) = δ0 +

∫
p(u)

∑
z∈L\{0}

p(u+ z − x)− λ

= δ0 +

∫
p(u)

∑
z∈L

p(u+ z − x)− λp ∗ p̃(x)− λ. (10.3.1)

The point process Ψ is said to exhibit cloaking ([51]) if the underlying structure L is hidden by the
perturbation, ie when there is a constant c such that∑

z∈L
p(z − x) = c ∀x ∈ Rd. (10.3.2)

Note that if this is true, then constant c has to be λ. If this is the case, the correlation measure does not really
depend on the underlying lattice L and becomes C = δ0 +λ1−p∗ p̃−λ1 = δ0−λp∗ p̃ and the structure factor
is S = 1− |ϕ|2. This leads to another characterization: a perturbed lattice is cloaked if |ϕ|2.SL = |ϕ|2∆L∗ is
identically zero, or equivalently if ϕ vanishes at every point in the dual lattice L∗.

Example 10.8 (URL). Consider the simple example of Φ = U + τZd, whose dual lattice is Zd. We perturb
the points of Φ by independent displacements which are uniformly distributed on the box [−a, a]d for some
a > 0. Such a model is often called Uniformly Randomized Lattice (URL) . The characteristic function of
the generic displacement V is given by (1.4.5), ie for ξ = (ξ1, . . . , ξd):

ϕV (ξ) = 2d
d∏
i=1

sin(aξi)

ξi
.

If we choose a ∈ N, this function clearly vanishes at every ξ ∈ Zd, hence we will clearly have |ϕ|2SΦ =
|ϕ|2∆Zd = 0 and the perturbed lattice Ψ is cloaked.

Example 10.9 (Einstein lattice). When the perturbations are standard gaussian variables, |ϕ(k)|2 = e−|k|
2/2

which never vanishes, the gaussian perturbations can never cloak an underlying lattice. This is why in this
case we can always reconstruct the underlying lattice using second-order methods ([82]), but reconstruction
of cloaked lattices require higher-order methods ([51]).
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11. Dependently perturbed lattices (DPL)

We now take a look at some models of perturbed lattices {x + Vx : x ∈ L}, but where the perturbations V
are no longer iid.

11.1. Stable matchings

[54]

11.2. Sliders are stealthy hyperuniform

We saw that independenly perturbed lattices cannot be stealthy. However, when the perturbations are
dependent, it can be the case.

Sliders are a very simple example of dependent perturbations on lattices, notably studied in [83]. Formally,
the lattice point (n,m) is going to be shifted to (n,m) + (um, vn), where ui, vj are two independent families
of perturbations. The model can be described as follows: all the points in the horizontal line Lh = {(n, h) :
n ∈ Z} of Z2 are to their right by the same random displacement uh. This is called the stacked slider in [83]:

Φ1 = {(n+ uh, h) : (n, h) ∈ Z2}

Then, we note Hk the points in the stacked slider coming from the horizontal line with first coordinate k:
Hk = {(k + un, n) : n ∈ Z}, and then we shift upward each of the points in Hk by a common random
displacement vk. The resulting shifted ‘line’ is {(k+un, n+vk) : n ∈ Z}, and their union is the double-slider.
The displacements U = (ui : i ∈ Z) and V = (vi, i ∈ Z) are supposed independent and uniformly distributed
over [0, a]. When a = 1, the crystal structure is hidden. The doubly-slided lattice can thus be written

Φ = {(n+ um,m+ un) : (n,m) ∈ Z2}. (11.2.1)

The construction of sliders can easily be extended to higher-dimensional spaces, and can also be adapted
to modify other processes than grids. Note that the construction in itself can easily be generalized to any
point process with a stationary colouring: points with a certain colour are shifted, then points with another
colour, etc.

The pair-correlation measure of the doubly-slided lattice is

g2 =
∑
n,m

δ(n+u′m,m+u′n) (11.2.2)

where the u′i, v
′
j are iid for i 6= 0, j 6= 0, and u′i = v′j = 0.
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Figure 5: A doubly-slided lattice and its structure factor.
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[6] Rémi Bardenet, Frédéric Lavancier, Xavier MARY, and Aurélien Vasseur. On a few statistical applica-
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A. Point processes and Palm technology

This appendix summarizes the elementary formalism for point processes. I do not delve into the technical
details: for excellent and exhaustive textbook-treatments of properties of stationary point processes, the
reader might refer to [18, 58, 11, 4].

I will constantly make a strong abuse of notation: for any set A, the notation |A| will sometimes stand
for the number of elements of A, and sometimes for the Lebesgue measure of A. I will change notations in a
close future.

A.1. Configurations

In this survey, we consider non-negative integer-valued Radon measures on Rd, which are simple in the sense
that the mass given to any singleton is either 0 or 1. Such a measure is called a configuration and can be
identified with the discrete set of its atoms — we will do this identification whenever we want. The set of
configurations on Rd is noted Conf(Rd). This space is equipped with the sigma-algebra H generated by the
counting functions ϕ ∈ Conf(Rd) → |ϕ ∩ A|, for any Borel set A; equivalently, H is generated by the sets
{|ϕ ∩A| = n}, where A runs through all bounded Borel subsets of Rd and n is an integer.

A random point process is simply a random variable on this set. An underlying probability space (Ω,F ,P)
will be fixed and will play no role in the sequel, although the bold-font letters E,P will always refer to this
underlying expectation and probability operators.

Capital greek letters such as Φ,Ψ will be my favorite notation for such random variables, the small-
case letters like ϕ being reserved to specific elements of Conf(Rd). If x is a point in Rd, we will note
ϕ+ x = {y + x, y ∈ ϕ} the set ϕ shifted by x.

A.2. Palm technology

We recall that a point process Φ is stationary if for any fixed x ∈ Rd, the shifted process Φ− x has the same
distribution as Φ. If this is the case, the intensity measure is a constant λ times the Lebesgue measure. In
all this survey, λ will always denote this intensity and will always be supposed to be nonzero.

Let Φ be a random stationary PP. The Palm distribution of Φ is the probability measure P◦ defined
through the formula

P◦(A) =
1

|B(0, 1)|
E

[∫
B(0,1)

1Φ−x∈Adx

]
. (A.2.1)

Indeed, one can replace B(0, 1) by any other measurable set B with positive Lebesgue measure. The distri-
bution P◦ is called the Palm version of the distribution of Φ. The point process Φ under its Palm distribution
almost-surely contains the origin 0. A simple extension procedure shows that for any measurable mapping
f , one has

E◦[f(Φ)] =
1

λ|B(0, 1)|
E

[∫
B(0,1)

f(Φ− x)dx

]
. (A.2.2)

We will not really use the properties of Palm distributions, except the elementary Campbell formula, which
can be formulated in its simplest form as follows: if f : Conf(Rd)×Rd is a nonnegative measurable function,
then

E

[∑
x∈Φ

f(x,Φ− x)

]
= λ

∫
Rd

E◦[f(x,Φ)]dx. (A.2.3)
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A.3. Intensities

For every integer k, the formula

f 7→ E

 ∑
x1,...,xk∈Φ

f(x1, . . . , xk)

 (A.3.1)

defines a unique measure µk on (Rd)k, which is called the k-point intensity measure of the process. When
applied to f(x1, . . . , xn) = 1B(x1) . . .1B(xn) for B some Borel set, the definition immediately implies that

µk(Bk) = E[|Φ ∩B|k]

where Bk = B × · · · ×B (k times).

A.4. Correlations

For every integer k, the formula

f 7→ E

 6=∑
x1,...,xk∈Φ

f(x1, . . . , xk)

 (A.4.1)

defines a unique measure µ(k) on (Rd)k, which is called the k-point correlation measure or the factorial
moment measure. In the definition, the sum is over all k-tuples of points belonging to Φ, such that all of
them are distincts. It is clear that µ(1) is simply the intensity measure of the process. Formula (A.4.1)
immediately implies that if B is a Borel set, then

µ(k)(Bk) = E [(|Φ ∩B|)k]

where (a)k := a(a− 1) · · · (a− k + 1) is the falling factorial.

A.5. Cumulants of Point processes

The cumulants measures of a point process Φ will be useful. For properties of cumulants of random variables,
see Appendix D at page 65. Let κn be the n-cumulant measure; it can be defined from the intensity measures
µk through the relations∫

(Rd)n
f(x1, . . . , xn)κn(dx1, . . . ,dxn) =

n∑
k=1

(−1)k−1(k − 1)!
∑

(π1,...,πk)∈Πk(n)

k∏
`=1

∫
(Rd)|π`|

f(xi1 , . . . , xi|π`|)µ
|π`|(dxi1 , . . . ,dxi|π`|) (A.5.1)

where Πr(n) denotes the set of r-partition of [n], ie ordered families (π1, . . . , πr) with π` ⊂ [n] nonempty and
π1 ∪ · · · ∪ πr = [n]. The notation |π`| denotes the number of elements in the subset π`.

Let us apply (A.5.1) to f(x1, . . . , xn) = 1B(x1) . . .1B(xn) for some Borel set B. The integral in the
right-most part of (A.5.1) is equal to

µ|π`|(B × · · · ×B) = E[|Φ ∩B||π`|].

Consequently, the real number κn(B × · · · × B) is nothing else than the (classical) n-th cumulant of the
real-valued random variable |Φ ∩ B| — see (D.0.3). With an abuse of notation, we will note this quantity
κn(B) for any Borel set B.
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A.6. Ergodicity

A measurable subset E of Conf(Rd) is called an invariant subset if for every x ∈ Rd we have

E = {ϕ− x : ϕ ∈ X}.

In other words, shifting every configuration ϕ contained in E does not change E. The collection of all
invariant subsets of Conf(Rd) forms itself a σ-algebra, called the invariant σ-algebra and noted I .

Definition A.1 (ergodicity). A stationary point process Φ on Rd is called ergodic if for every invariant
subset E ∈ I , one has

P(Φ ∈ E) ∈ {0, 1}. (A.6.1)

Example A.2 (lattices are ergodic). Let us take the simple example of a stationarized grid Φ = U + L
where L is a fixed lattice. For any invariant subset E ∈ I , we have P(Φ ∈ E) = P(L ∈ E −U) = P(L ∈ E)
(because E = E − U) and this can only be zero or one for L is not random, hence stationarized lattices are
ergodic.

It is often not so easy to prove that a point process is ergodic, but there are several criteria which can be
found in the books. They notably imply that Poisson point processes are ergodic (they are indeed mixing,
which is not the case for stationarized lattices). The second example is quite important to us, especially for
Section 9.

Example A.3 (independently perturbed ergodic PPs are ergodic). Let Ψ be a stationary point process, and
let Φ = ΦΨ,V be the independent perturbation of Ψ defined in (9.0.1): we take an iid family (Vx)x∈Ψ with
common centered distribution V , and we set Φ = {x + Vx : x ∈ Ψ}. I claim that if Ψ is ergodic, then Φ is
also ergodic. Let us prove this.

We set

The most striking example of non-ergodic point process is obtained as follows: take for instance two
independent point processes Φ0,Φ with intensities 1 and 2, then set Φ = ΦX where X is an independent
coin, say X ∼ Ber(0.5). Such a process does not satisfy the ergodic theorem thereafter, hence is not ergodic
itself.

The following theorem is of paramount importance since it determines a spatial law of large numbers
on ergodic point processes. In the statement, ‘convex averaging sequence’ means a sequence (Bn) of nested
compact convex sets with nonempty interior and such that ∪Bn = Rd — one may simply think of Bn =
B(0, n).

Theorem A.4 (spatial ergodic theorem). Let Φ be a stationary, ergodic point process on Rd with Palm
distribution P◦. Let (Bn) be a convex averaging sequence. Then, for any measurable function F : Conf(Rd)→
R telle que E◦[|F (Φ)|] <∞, on a

lim
n→∞

1

|Bn|
∑

x∈Φ∩Bn

F (Φ− x) = E◦[F (Φ)], P-almost surely. (A.6.2)

Example A.5. Let A = B(0, r) let F (ϕ) = |ϕ ∩A| − δ0(A). The ergodic theorem entails

lim
n→∞

1

|Bn|
∑

x∈Φ∩Bn

(|Φ ∩B(x, r)| − 1) = E◦[F (Φ)] = λ−1µ◦(B(0, r)) = K(r) (A.6.3)

where K is the Ripley K-function defined in Remark (??).
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B. Harmonic analysis

B.1. Tempered distributions and the Schwartz space

We list here the few basic results we will need on tempered distributions and their Fourier transforms; they
can be found in any introductory book to real analysis. We refer to Laurent Schwartz’s Cours d’analyse or
to [40].

A function f : Rd → C is a Schwartz function if it has derivatives at every order and if for any multi-index
α, β one has

pα,β(f) := sup
x∈Rd

|xβ∂αf(x)| <∞.

The maps pα,β are semi-norms and they generate the topology of the set S (Rd) of every Schwartz function.
A continuous linear form over S (Rd) is called a tempered distribution and the set of tempered distributions
is noted S ′(Rd). The Fourier transform of a Schwartz function f is the Schwartz function defined by

F (f)(ξ) :=

∫
Rd
f(x)e−i〈ξ,x〉dx

and the inverse Fourier transform is Ff(ξ) := F (f)(−ξ). The Fourier transform is an isomorphism of S (Rd)
and one has the fundamental reciprocity relation

FF = FF = (2π)dI. (B.1.1)

The Fourier transform of a tempered distribution S ∈ S ′(Rd) is then defined through duality by

〈FS, f〉 = 〈S,Ff〉.

This is an isomorphism on S ′(Rd) and (B.1.1) still holds.

B.2. Operations on tempered distributions: convolution and multiplication

If g is a smooth function with sub-polynomial growth, one can define the multiplication of (the tempered
distribution associated with) g and a tempered distribution S through the formula

〈g.S, f〉 := 〈S, gf〉.

In general, if S is a little bit more than a tempered distribution, one can multiply S with more general
functions than smooth functions. For example, if S is indeed a tempered measure, one can multiply S by
any bounded measurable functions.

Convolution is more difficult.
If g is L1, then one can define the convolution of g with a tempered distribution S through the formula

〈g ∗ S, f〉 := 〈S, g ~ f〉. (B.2.1)

With those definitions, the group morphism property of Fourier transforms is preserved:

F (g ∗ S) = ĝ.FS. (B.2.2)

B.3. Special Fourier transforms

Let B(0, r) be the euclidean ball of radius r around the origin in Rd. Its Fourier transform is given by the
following formula

1̂B(0,r)(ξ) = rd/2
Jd/2(r|ξ|)
|ξ|d/2

. (B.3.1)
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where Jν is the Bessel function of the first kind of index ν. We recall that the basic definition of the Bessel
function is

Jν(z) =

∞∑
n=0

(−1)n

Γ(n+ 1)Γ(n+ ν + 1)

(z
2

)2n+ν

.

Proof. Set B = B(0, 1). As 1B is rotation-invariant, so is its Fourier transform, hence it is enough to compute
the Fourier transform at ξ = (0, . . . , 0, t). Let ωk be the volume of the k-dimensional unit ball 13. Integration
by slices yields

1̂B(ξ) =

∫
B

e−itxddx1 . . . dxd = ωd−1

∫ 1

−1

e−ixt(
√

1− x2)d−1dx.

Now the Poisson representation formula for Bessel functions, valid for any ν > −1/2, is

Jν(z) =
(z/2)ν

π1/2Γ(ν + 1/2)

∫ 1

−1

e−izt(1− t2)ν−1/2dt (B.3.2)

where Jν is the Bessel function of the first kind of order ν. Setting ν = d/2, we get

1̂B(ξ) =
ωd−1

√
πΓ((d+ 1)/2)

(t/2)d/2
Jd/2(t) =

Jd/2(|ξ|)
|ξ|d/2

.

By homogeneity14, we obtain (1.4.1)

We will need some asymptotics of Bessel functions. Such asymptotics can be easily found on any book
on special functions, such as [59].

Lemma B.1. Let ν be a positive real number. As x→∞, one has

Jν(t) =

√
2

πt

(
cos(t− cν) +O

(
1

t

))
(B.3.3)

where cν := νπ/2 + π/4. The positive real function j : x ∈ Rd 7→ Jd/2(|x|)2/|x|d thus satisfies the following
bound as |x| → ∞:

j(x) = O

(
1

|x|d+1

)
. (B.3.4)

We now turn to boxes. We note B∞(0, r) the set of x ∈ Rd with all coordinates between −r and r, ie the
box of side length 2r. Its Fourier transform is given as follows.

̂1B∞(0,r)(ξ) = 2d
d∏
i=1

sin(rξi)

ξi
. (B.3.5)

Proof. Set ξ = (ξ1, . . . , ξd). Then,∫
B∞(0,1)

e−i〈ξ,x〉dx =

∫ 1

−1

· · ·
∫ 1

−1

e−i〈ξ1,x1〉 · · · e−i〈ξd,xd〉dx1 . . . dxd

=

d∏
i=1

(∫ 1

−1

e−i〈ξi,x〉dx

)

= 2d
d∏
i=1

sin(ξi)

ξi
.

Identity (1.4.5) follows from homogeneity.

13One has ωk = πk/2

Γ(1+k/2)
.

14If f(x) = g(x/r) then f̂(ξ) = |r|dĝ(rξ).
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B.4. Positive, positive-definite (ppd) measures

A Borel measure m on Rd is ppd if it is a positive Borel measure which is also positive definite, which means
that for any compactly supported test function f , one has∫

Rd
f ∗ f̃(x)m(dx) > 0 (B.4.1)

where f̃(x) := f(−x). As we will often have to use the convolution f ∗ g̃, I find it easier to use the notation
f ~ g instead. We refer the reader to the first chapter of Berg and Frost’ Potential theory book for a clear
treatment of this theme ([10]).

The set of ppd measures is noted Ppd. A measure is signed ppd if it is the difference of two ppd measures.
It turns out that ppd measures are the good framework for working with Fourier transform of measures
which are not necessarily finite. We refer the reader to the first chapter of Berg and Frost’ Potential theory
book for a clear treatment of this theme ([10]). It is not obvious how to define Fourier transforms of infinite

measures in general, even if they are locally finite; for instance, the measure ex
2

dx is locally finite but it does
not define a tempered distribution, hence there is no obvious way to define its Fourier transform. However,
ppd measures behave well.

Proposition B.2. Ppd ⊂ S ′(Rd).

Consequently, for any signed ppd m, one can define Fm, which is a tempered distribution; but Bochner’s
theorem comes into play and guarantees that Fm is indeed a signed measure.

Theorem B.3 (Ultimate Bochner Theorem). The tempered Fourier transform is an isomorphism of Ppd

and the inversion formula holds.

In other words, if m is ppd and has Fourier transform m̂, then for any f ∈ S (Rd) one has∫
Rd
f(x)m(dx) = (2π)−d

∫
Rd
f̂(x)m̂(dx) (B.4.2)

which also known as the reciprocity relation.

B.5. Harmonic analysis on lattices

The celebrated Poisson summation formula (see [40], chapter 7) reads∑
n∈τZ

f̂(n) =
∑
n∈Z

f(n) (B.5.1)

for any suitable function f , here taking f ∈ S (Rd) will be sufficient. In this equation, beware of the
normalization: I use the ‘un-normalized FT’ defined as f̂(n) =

∫
e−inuf(u)du, hence the first sum is over τZ

with τ = 2π. At the level of tempered distributions, this is exactly equivalent to

F∆τZ = ∆Z. (B.5.2)

More generally, this can be extended to Zd as F∆τZd = ∆Zd . Now, suppose that L = G∗(τZd) for some G
with determinant 1. For any test function f ∈ S (Rd), one has

〈F∆L, f〉 = 〈∆L,Ff〉 =
∑
x∈L

f̂(−x)

=
∑
x∈τZd

f̂(−G∗x)

=
∑
x∈τZd

f̂∗(x) = 〈F∆τZd , f∗〉
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where f∗(u) = f(−G−1u), the third line coming from symmetries of the FT. But then, this is equal to
〈∆Z, f∗〉 thanks to (B.5.2), and it is also equal to 〈∆G−1Zd , f〉. Consequently, we have proven the following
classical result on dual lattices.

Theorem B.4 (lattice duality). Let L = G∗(τZd) be a lattice with G ∈ SL(Rd). Define L∗ = G−1Zd. Then,

F∆L = ∆L∗ . (B.5.3)

Example B.5. Note e1 = (1, 0) and e2 = (0, 1). The lattice L = {α2πxe1 + β2πye2 : x, y ∈ Z} corresponds
to the choice

G =

(
α 0
0 β

)
G−1 =

(
α−1 0

0 β−1

)
so that L∗ = {xe1/α+ ye2/β : x, y ∈ Z2}.
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C. Stationary processes and Kolmogorov’s criterion

An integer-indexed random process X = (Xn)n∈Zd is called stationary if the distribution of (Xn+k : n ∈ Zd)
does not depend on k ∈ Zd. If this is the case, let us note c(k) the k-th covariance

c(k) := Cov(X0, Xk) = Cov(Xn, Xn+k) (C.0.1)

provided that these covariances exist — assuming that X0 has a variance is sufficient, since in this case
|Cov(X0, Xn)| 6

√
Var(X0)Var(Xn) = Var(X0) <∞ by the Cauchy-Schwarz inequality and stationarity. In

the sequel, we will note Td = Rd/τZd (with τ = 2π), and we will identify this space with [0, 2π[d. We will
naturally endow it with the Borel σ-algebra, and with the Lebesgue measure dx. We will use the common
notation for exponential functions, en : ξ ∈ Td 7→ ei〈ξ,n〉 ∈ C. We first recall an important result regarding
spectral representations of linear combinations of stationary processes.

Proposition C.1. Let X = (Xn)n∈Zd be a stationary process with covariances (c(k) : k ∈ Zd). There is a
Borel measure µ on Td such that the map ı : Span(Xn : n ∈ Zd) → L2(µ) implicitly defined by ı(Xn) = en
is an (2π)d-isometry, ie ‖Y ‖2 = (2π)−d|ı(Y )|2. Moreover, the measure µ is uniquely determined by X and
satisfies c(k) = (2π)−d

∫
ek(ξ)µ(dξ).

The measure µ has total mass µ(Td) = Var(X0) < ∞. It is called the spectral measure of X. An
important link between X and µ is given by the following theorem, due to Kolmogorov himself in 1941.

Theorem C.2 (Kolmogorov, [55, 73]). Let X be a stationary process with spectral measure µ. Let H0 =
Span(Xn : n 6= 0) be the linear vector space spanned by all the Xn’s except X0 and let dist(X0, H0) be the
L2-distance between X0 and the subspace H0, ie

dist(X0, H0) := min{E[|X0 − Y |2]1/2 : Y ∈ H0}.

Note µ = µac + µsg the Lebesgue decomposition of µ with respect to the Lebesgue measure, and note µ′ac the
density of µac with respect to the Lebesgue measure. Then,

dist(X0, H0) =

(∫
Td

1

µ′ac(ξ)
dξ

)−1/2

(C.0.2)

where 1/∞ means 0.

Proof. I follow the proof as it is given in [13]. Using the isomorphism ı in Proposition C.1, we only have to
show that the distance between the constant function 1 = ı(X0) and the subspace L0 := ı(H0) ⊂ L2(µ) is
given by (2π)d times the RHS of (C.0.2). For ease of notation we will also note u(ξ) = µ′ac(ξ). First, let us
decompose 1 = p+ q where q ∈ L0 and p ∈ L⊥0 , so the distance between X0 and H0 is equal to the norm of p.

Let us consider the measure ν(dξ) = p(ξ)µ(dξ). As p is orthogonal to L0, for every n 6= 0 we have

ν̂(n) =

∫
Td

en(ξ)ν(dξ) =

∫
Td
p(ξ)en(ξ)µ(dξ) = 0

and ν̂(0) =
∫
Td p(ξ)µ(dξ), which is going to be called γ. These Fourier coefficients coincide with those of the

measure γdξ/(2π)d, hence by injectivity ν = γdξ/(2π)d = δdξ. But the Lebesgue decomposition of ν is given
by p(ξ)µsg(dξ) + p(ξ)u(ξ)dξ, which ensures that p vanishes on the support of µsg, that almost everywhere we
have p(ξ) = δ/u(ξ), and finally that

for Lebesgue-almost every ξ ∈ Td, q(ξ) = 1− δ

u(ξ)
. (C.0.3)

Together, these three facts have a crucial consequence: let us recall that |p| = dist(1, L0); then,

|p|2 =

∫
Td
p(ξ)2µ(dξ) =

∫
Td
p(ξ)2µsg(dξ) + δ2

∫
Td

1

u(ξ)2
µac(dξ) = δ2

∫
Td

1

u(ξ)
dξ.
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We now separately consider the two possible cases for the value of β :=
∫
u(ξ)−1µ(dξ).

First case: β =∞. The preceding identities say that |p|2 = δ2β. If δ was nonzero we should have |p| =∞,
which is absurd since p ∈ L2(µ), hence δ = 0 and p = 0 and dist(X0, H0) = 0.

Second case: β <∞. Let S be a support of µac and define a function f by f(ξ) = 0 if ξ /∈ S and u(ξ)−1

otherwise. We have ∫
f(ξ)2µ(dξ) =

∫
1

u(ξ)2
µac(dξ) = β

hence f is in L2(µ). On the other hand, for each n 6= 0, one has

〈en, f〉 =

∫
Td

1

u(ξ)
µac(dξ) =

∫
Td

en(ξ)dξ = 0

which entails f ∈ L⊥0 and in particular 0 = 〈f, q〉 =
∫
Td q(ξ)dξ. Thanks to (C.0.3) and the fact that

the Lebesgue measure of Td is (2π)d, we finally get δ = (2π)d

β , and |p|2 = δ2β = (2π)2dβ−1. But as

dist(X0, H0) = (2π)−ddist(1, L0) = (2π)−d|p|, the identity (C.0.2) is proved.

Consequently, X0 is a linear function of (Xn : n 6= 0) if and only if
∫
µ′ac(ξ)−1dξ = ∞: the random

variable X0 is entirely determined by all the other Xn’s, and the dependence between them is linear. This
is called ‘linear rigidity’. Checking if a stationary process X satisfies Kolmogorov’s criterion can be difficult,
but Bufetov, Dabrowski and Qiu have a very nice sufficient condition in one dimension ([13], Theorem 3.1).

Theorem C.3. Let X = (Xn)n∈Z be a one-dimensional stationary process with covariances (c(k) : k ∈ Z)
and spectral measure µ = µsg + µac. If

sup
m>1

m∑
n>m

|c(n)|

 <∞ (C.0.4)

and ∑
n∈Z

c(n) = 0 (C.0.5)

then dist(X0, H0) = 0, hence X is linearly rigid.

The second equation is obviously the same one as the C(Rd) = 0 hyperuniformity condition from stationary
point processes. The proof uses tools from the theory of Fourier series and their link with the so-called
Zygmund class ([66]).
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D. Cumulants

Let X be a real random variable with all moments finite. Let mn := E[Xn] be its n-th moment. Their
exp-generating function is called the moment generating function (MGF):

ϕ(z) = E[ezX ] =

∞∑
n=0

mn
zn

n!
.

The cumulants are defined as the coefficients of the analytic function ψ(z) := logϕ(z). More precisely, the
n-th cumulant Cn(X) =: cn is defined as

ψ(z) := log E[ezX ] = 1 +

∞∑
n=1

cn
zn

n!
. (D.0.1)

It is clear from the definition that eψ(z) = ϕ(z). From this identity one can extract formulas for expressing
cn in terms of mn, as in the following theorem.

Theorem D.1 (reciprocical relations between moments and cumulants). Let X be a real-valued random
variable with all moments finite. Note mn = E[Xn] its moments and cn = Cn(X) its cumulants. These
sequences satisfy

mn =

n∑
k=1

∑
(π1,...,πk)∈Πk(n)

k∏
j=1

m|πj | (D.0.2)

and also

cn =

n∑
k=1

(−1)k−1(k − 1)!
∑

(π1,...,πk)∈Πk(n)

k∏
j=1

m|πj | (D.0.3)

where Πk(n) is the set of k-partitions of n and |πi| is the number of elements in the block πi ⊂ [n].

One can alternatively define the cumulants through (D.0.3), and then check that their exponential gen-
erating function ψ(z) =

∑
cnz

n/n! is linked with the exponential generating function of m, noted ϕ, by the
relation expψ(z) = ϕ(z). This result is often called the exponential formula. See [2], Section 3.3 for many
related results.

From these relations, it is almost obvious that cumulants are homogeneous : Cn(tX) = tnCn(X). On the
other hand, the definition given above allows us to see that cumulants behave well with translations. Indeed,
log E[ez(X+x)] = zx+ log E[ezX ]. As a consequence, only the term corresponding to n = 1 is modified in the
RHS of (D.0.1). This shows that for every n > 2, one has Cn(X+x) = Cn(X), while C1(X+x) = C1(X)+x.

Example D.2 (Gaussian distribution). The generating function of the centered Gaussian distribution with

variance σ2 is given by ϕ(z) = eσ
2z2/2, hence ψ(z) = σ2z2/2. This proves that the N (0, σ2) distribution is the

only one with all cumulants equal to zero, except the second one equal to σ2. Marcinkiewicz’s theorem states
that indeed, Gaussian random variables are the only ones with only a finite number of nonzero cumulants.

Example D.3 (Poisson). The MGF of a Poi(λ) random variable is given by ϕ(z) = eλ(ez−1), hence the
cumulant generating function is ψ(z) = λ(ez − 1) and we immediately see that the cumulants are all equal
to λ.

Theorem D.4. Let (Xn) be a sequence of real random variables. If for every integer p,

lim
n→∞

Cp(Xn) =

{
σ2 if p = 2,

0 else
(D.0.4)

then Xn  N (0, σ2).
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Proof. If C2(Xn)→ σ2 then (Xn) is a sequence of bounded variables in L2, and by Chebyshev’s inequality,
it is tight, hence relatively compact by Prokhorov’s theorem. Moreover, by the same argument, (X2k

n ) is
uniformly integrable for every k, and by standard results, weak convergence + uniform integrability of powers
implies convergence of moments. Consequently, along any subsequence converging weakly, the moments and
cumulants at every order also converge. But then the limit along this subsequence has only the second
cumulant which is nonzero and equal to σ2: it is N (0, σ2), and the whole sequence converges towards
N (0, σ2) both weakly and in moments.
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